数论(欧拉函数)

一 。欧拉函数

若a,m互质,a^{φ(m)}≡1(mod m)

1 欧拉函数定义

数论中,对正整数n欧拉函数φ(n)是小于或等于n的正整数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为φ函数(由高斯所命名)或是欧拉总计函数(totient function,由西尔维斯特所命名)。

例如φ(8) = 4,因为1,3,5,7均和8互质。

也可以从简化剩余系的角度来解释,简化剩余系(reduced residue system)也称既约剩余系或缩系,是m的完全剩余系中与m互素的数构成的子集,如果模m的一个剩余类里所有数都与m互素,就把它叫做与模m互素的剩余类。在与模m互素的全体剩余类中,从每一个类中各任取一个数作为代表组成的集合,叫做模m的一个简化剩余系。

(1,3,5,7)就构成了8的一个简化剩余系

2 标准分解式

标准分解式:将质因数分解的结果,按照质因数大小,由小到大排列,并将相同质因数的连乘积,以指数形式表示,此种表示法称为标准分解式。

如2020的标准分解式是

3 欧拉函数计算方法

(1)先化为标准分解式形式

(2)再依照下式规则计算

例如:

欧拉函数的性质

  • φ(n) 是积性函数:

    即若a⊥b,那么 φ(a⋅b)=φ(a)⋅φ(b)

    特别地,若 n 为奇数,则 φ(2n)=φ(n)

    原因: 2 为质数,且 φ(2)=1 。

  • 对于任意素数 p ,有φ(pk)=pk−1⋅(p−1)

    证明: 显然对于从 1 到 pk 的所有数之中,除了pk−1 个 p 的倍数之外,其他的数都与 pk 互素,故 φ(pk)=pk−pk−1=pk−1⋅(p−1)

  • n=∑d∣n​φ(d)

    表示 n 及其因数的欧拉函数之和等于 n

第一种方法在分解质因数是求出欧拉函数

时间复杂夫O(sqrt(n))

class person {
	public:
		static int phi(int n) {
			int ans = n;
			for (int i = 2; i <= sqrt(n); i++) {
				if (n % i == 0) {
					ans = ans / i * (i - 1);
					while (n % i == 0) {
						n /= i;
					}
				}
			}
			if (n > 1) ans = ans / n * (n - 1);
			return ans;
		}
};

第二种方法是利用欧拉筛求出1~n的欧拉函数 

时间复杂度为O(n)

#include<cstdio>
#include<cmath>
#include<iostream>
#include<map>
#include<cstring>
using namespace std;
#define endl "\n"
#define ll long long
const int N = 1e6 + 7;
const int mod = 998244353;
int prime[N];
bool isprime[N];
int phi[N];
int cnt = 0;
class person {
	public:
		static void euler(int n) {
			memset(isprime, true, sizeof(isprime)); // 先全部标记为素数
			isprime[1] = false; // 1不是素数
			for (int i = 2; i <= n; ++i) { // i从2循环到n(外层循环)
				if (isprime[i]) {
					prime[++cnt] = i;
					phi[i] = i - 1;
				}
				for (int j = 1; j <= cnt && i * prime[j] <= n; ++j) {
					isprime[i * prime[j]] = false;
					if (i % prime[j]) {
						phi[i * prime[j]] = phi[i] * phi[prime[j]];
					} else {
						phi[i * prime[j]] = phi[i] * prime[j];
						break;
					}
					// 最神奇的一句话,如果i整除prime[j],退出循环
					// 这样可以保证线性的时间复杂度
				}
			}
		}
};
int main() {
	int n;
	cin >> n;
	if(n==1)
	{
		cout<<0;
		return 0;
	}
	person::euler(n);
	int sum = 3;
	for (int i = 2; i <n; i++) {
		sum += 2*phi[i];
	}
	cout << sum;
	return 0;
}

[SDOI2008]仪仗队 (nowcoder.com)(题目链接)

二 。欧拉函数扩展

若b>φ(m)即使a,m不互质,a^b≡a^(b%φ(m)+φ(m))(mod m)

引出欧拉降幂公式

求解的问题:

为了求解这个式子a^bmodc,我们可以怎么做?

暴力pow?快速幂?

很显然,当b大到一定程度时,利用pow或者快速幂这样的算法是无法在给定时间内求解的,这时我们引入欧拉降幂算法,这个算法的特点就是降低幂方的值而不影响最终结果,使我们解决问题的时间缩短。
所以当b一定大时采用欧拉降幂来求


#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAX = 1000100;
ll  qmi(ll  a, ll b, ll mod) {
	ll ans = 1;
	a %= mod;
	while (b) {
		if (b & 1) {
			ans = (ans * a) % mod;
		}
		b >>= 1;
		a = (a * a) % mod;
	}
	return ans;
}
ll  Euler(ll x) {
	ll Euler = x;
	for (ll i = 2; i * i <= x; i++) {
		if (x % i == 0) {
			Euler = Euler / i * (i - 1);
			while (x % i == 0) {
				x /= i;
			}
		}
	}
	if (x > 1) {
		Euler = Euler / x * (x - 1);
	}
	return Euler;
}
ll eulerDropPow(ll a, char b[], ll c) {
	ll EulerNumbers = Euler(c);
	ll sum = 0;
	for (ll i = 0, len = strlen(b); i < len; ++i) {
		sum = (sum * 10 + b[i] - '0') % EulerNumbers;
	}
	sum += EulerNumbers;
	return qmi(a, sum, c);
}
int main() {
	ll a, c;
	char b[MAX];
	while (~scanf("%lld%s%lld", &a, b, &c)) {
		printf("%lld\n", eulerDropPow(a, b, c));
	}
	return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Smile灬凉城666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值