卡特兰数(组合数学的应用)

本文介绍了如何利用栈数据结构和动态规划解决涉及卡特兰数的问题,如操作数序列生成、货币交换、路径计数和二叉树形态等,强调了+1-1模型和dp在这些问题中的关键作用。
摘要由CSDN通过智能技术生成

 提示

本文章并未对卡特兰数详细分析,只是总结归纳一些心得

如果想要详细内容,有以下链接

leetcode卡特兰数

百度卡特兰数

洛谷卡特兰数

经典问题

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙

宁宁考虑的是这样一个问题:一个操作数序列,1,2,…,�1,2,…,n(图示为 1 到 3 的情况),栈 A 的深度大于 n。

现在可以进行两种操作,

  1. 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
  2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3 生成序列 2 3 1 的过程。

解析

        问题关键在于在每次出栈时不能为空。分析总体有n次出栈和n次入栈,即在第i(1<=i<=n)次pop时stack.size()>0

        我的理解是这是一种消耗性问题,即在每次消耗时有足够的使用。当然这只是大多数卡特兰题型的类型。比如:

电影票一张 50 coin,且售票厅没有 coin。m 个人各自持有 50 coin,n 个人各自持有 100 coin。

则有多少种排队方式,可以让每个人都买到电影票。

一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路。

在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数。

n + 1 个叶子节点能够构成多少种形状不同的(国际)满二叉树

(国际)满二叉树定义:如果一棵二叉树的结点要么是叶子结点,要么它有两个子结点,这样的树就是满二叉树。

        这些问题都可以抽象为+1,-1的模型看待。满足每次操作-1后sum>=0的条件。

具体理解卡特兰的推导公式可以查看

卡特兰推导文章

其他

卡特兰数的组合数学类题目通常也可以通过dp实现,比如上述题目

此外再分享两道例题

添加的主要原因是该题无法套用+1 -1模型,而是采用dp,分解子问题实现的,C(n)=C(0)C(n-1)+C(1)C(n-2)+...C(n)C(0)

其实上述+1 -1问题也可以按该推理dp模型实现。

总结 卡特兰数的推导是dp的优化。

题目模型可以理解为+1 -1,有些题目也需要理解为dp方向的分解子问题,这也是卡特兰数推导出来的例一方向

不同的二叉搜索树

树屋的阶梯

乌云

三角剖分问题(先鸽了
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值