提示
本文章并未对卡特兰数详细分析,只是总结归纳一些心得
如果想要详细内容,有以下链接
经典问题
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙
宁宁考虑的是这样一个问题:一个操作数序列,1,2,…,�1,2,…,n(图示为 1 到 3 的情况),栈 A 的深度大于 n。
现在可以进行两种操作,
- 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
- 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3
生成序列 2 3 1
的过程。
解析
问题关键在于在每次出栈时不能为空。分析总体有n次出栈和n次入栈,即在第i(1<=i<=n)次pop时stack.size()>0
我的理解是这是一种消耗性问题,即在每次消耗时有足够的使用。当然这只是大多数卡特兰题型的类型。比如:
电影票一张 50 coin,且售票厅没有 coin。m 个人各自持有 50 coin,n 个人各自持有 100 coin。
则有多少种排队方式,可以让每个人都买到电影票。
一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路。
在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数。
n + 1
个叶子节点能够构成多少种形状不同的(国际)满二叉树(国际)满二叉树定义:如果一棵二叉树的结点要么是叶子结点,要么它有两个子结点,这样的树就是满二叉树。
这些问题都可以抽象为+1,-1的模型看待。满足每次操作-1后sum>=0的条件。
具体理解卡特兰的推导公式可以查看
其他
卡特兰数的组合数学类题目通常也可以通过dp实现,比如上述题目
此外再分享两道例题
添加的主要原因是该题无法套用+1 -1模型,而是采用dp,分解子问题实现的,C(n)=C(0)C(n-1)+C(1)C(n-2)+...C(n)C(0)
其实上述+1 -1问题也可以按该推理dp模型实现。
总结 卡特兰数的推导是dp的优化。
题目模型可以理解为+1 -1,有些题目也需要理解为dp方向的分解子问题,这也是卡特兰数推导出来的例一方向
乌云
三角剖分问题(先鸽了