4.1 二叉树的构建以及遍历

本文介绍了二叉树的概念,包括定义和基本术语。通过使用队列管理节点指针,详细阐述了如何构建二叉树,并提供了入队、出队的函数。此外,文章还讨论了四种遍历二叉树的方法:先序、中序、后序和层次遍历,并给出了相应的代码示例。
摘要由CSDN通过智能技术生成

1.二叉树的定义及概念

 定义: 树(Tree)是n(n>=0)个结点的有限集,它或为空树(n = 0),或为非空树。对于非空树T:

(1) 有且仅有一个特定的称为根(root)的结点;

(2)除去根节点外,其余结点可分为m(m>0)个互不相交的有限集T1,T2,......,Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree);

树的基本术语我这里就不再赘述,各位请自行百度。

2.二叉树的构建

二叉树的节点的构建

typedef struct BTNode{
    char element;//存放节点中的元素
    BTNode* left;//左子树的地址
    BTNode* right;//右子树的地址
}BTNode, *BTNodePtr;
BTNodePtr constructBTNode(char paraChar){
    BTNodePtr resultPtr = (BTNodePtr)malloc(sizeof(BTNode));
    resultPtr->element = paraChar;//填入元素
    resultPtr->left = NULL;
    resultPtr->right = NULL;
    //左右均不链接
    return resultPtr;
}//Of constructBTNode

我们这里用一个队列来管理这个二叉树的每个节点的指针

当我们需要创造一个有意义的节点时(即其中有元素),将这个节点的地址存入队列中,当需要向下衍生更多的子树的时候,我们就将队列此时的首个地址弹出,这个节点的左右此时是没有子树的地址的,实际操作如下。

typedef struct BTNodePtrQueue{
    BTNodePtr* nodePtrs;//队列的存储空间
    int front;//首个元素
    int rear;//末尾元素
}BTNodePtrQueue, *QueuePtr;

队列的初始化

QueuePtr initQueue(){
    QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct BTNodePtrQueue));
    //申请队列的头节点
    resultQueuePtr->nodePtrs = (BTNodePtr*)malloc(QUEUE_SIZE * sizeof(BTNodePtr));
    //动态申请一片我们开始就预定好的空间
    resultQueuePtr->front = 0;
    resultQueuePtr->rear = 1;
    //均为指针,用于队列的增删
    return resultQueuePtr;
}//Of initQueue

队列的入出(这里仅展示代码,不再注释)

当然也要对整个队列空间进行检查,防止出现溢出。

void enqueue(QueuePtr paraQueuePtr, BTNodePtr paraBTNodePtr){
    printf("front = %d, rear = %d.\r\n", paraQueuePtr->front, paraQueuePtr->rear);
    if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
        printf("Error, trying to enqueue %c. queue full\r\n", paraBTNodePtr->element);
        return;
    }//Of if
    paraQueuePtr->nodePtrs[paraQueuePtr->rear] = paraBTNodePtr;
    paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
    printf("enqueue %c ends.\r\n", paraBTNodePtr->element);
}//Of enqueue
BTNodePtr dequeue(QueuePtr paraQueuePtr){
    if (isQueueEmpty(paraQueuePtr)) {
        printf("Error, empty queue\r\n");
        return NULL;
    }//Of if

    paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;
    //BTNodePtr tempPtr = paraQueuePtr->nodePtrs[paraQueuePtr->front + 1];

    printf("dequeue %c ends\r\n", paraQueuePtr->nodePtrs[paraQueuePtr->front]->element);
    return paraQueuePtr->nodePtrs[paraQueuePtr->front];
}//Of dequeue

接下来,是整个程序的关键

我会配合注释和一部分图片一步一步地讲解这部分,因为这是构建树的关键

BTNodePtr stringToBTree(char* paraString){
    int i;。//用于输入的字符串的移动
    char ch;//用于队列的出入

    //Use a queue to manage the pointers
    QueuePtr tempQueuePtr = initQueue();
    //看到上面这句话了没?
    用队列来管理这个树中的每个节点的指针

    BTNodePtr resultHeader;//头指针
    BTNodePtr tempParent, tempLeftChild, tempRightChild;
    //存储树中主要元素的指针
    i = 0;
    ch = paraString[i];
    resultHeader = constructBTNode(ch);
    enqueue(tempQueuePtr, resultHeader);//这几句自行理解,不多赘述
    
    //从这里开始就是如何链接各个节点了
    while(!isQueueEmpty(tempQueuePtr)) {
        tempParent = dequeue(tempQueuePtr);
        //先从队列中出一个节点,作为根,之后的循环中,我们不断地去出,作为新的子树的根。

        //The left child
        i ++;
        ch = paraString[i];
        if (ch == '#') {
            tempParent->left = NULL;
        } else {
            tempLeftChild = constructBTNode(ch);
            enqueue(tempQueuePtr, tempLeftChild);//将读入的字符所创建的节点进行进队列
            tempParent->left = tempLeftChild;
        }//Of if
        
        //以下同理

        //The right child
        i ++;
        ch = paraString[i];
        if (ch == '#') {
            tempParent->right = NULL;
        } else {
            tempRightChild = constructBTNode(ch);
            enqueue(tempQueuePtr, tempRightChild);
            tempParent->right = tempRightChild;
        }//Of if
    }//Of while

    return resultHeader;
}//Of stringToBTree

可能只看注释会有些生涩难懂,下面我会用图例加以注释

首先建立根

此时队列的情况

而后我们要构成树,就要将a从队列中弹出,作为下两个节点的父节点。

而后读入c,d    注意:此时若输出 enqueue 某个元素 ends,已经成了树的一部分,只有当这个节点需要作为其他节点的父节点的时候,我们就将它从队列中弹出。如图

 因此,下面的字符的处理方式就不再赘述

两个问题:

1.当整个树构建完成,队列中还有元素吗?

2.树的图像又是什么样子的呢?

解答:

1.为空,因为所有意义的节点都是父节点,都从队列中弹出了

2.如下图

注:这里的e b f 都是有子节点的,但都为空,并未画出来。

4.遍历的方法

在课堂上我们讲了先序,中序,后序的遍历函数。

但本质上,它们并无差异,遍历元素的顺序都是一样的,只是打印的时机不同。

这里附上这三段代码

请读者自行思考

/**
 * Preorder
 */
void preorder(BTNodePtr tempPtr){
    if (tempPtr == NULL){
        return;
    }//Of if

    printf("%c", tempPtr->element);
    preorder(tempPtr->left);
    preorder(tempPtr->right);
}//Of preorder

/**
 * Inorder
 */
void inorder(BTNodePtr tempPtr){
    if (tempPtr == NULL) {
        return;
    }//Of if

    inorder(tempPtr->left);
    printf("%c", tempPtr->element);
    inorder(tempPtr->right);
}//Of inorder

/**
 * Post order
 */
void postorder(BTNodePtr tempPtr){
    if (tempPtr == NULL) {
        return;
    }//Of if

    postorder(tempPtr->left);
    postorder(tempPtr->right);
    printf("%c", tempPtr->element);
}//Of postorder

而层次遍历,则是真的不同的遍历方式

我大概简述一下思路,后文会附上代码。

思路:既然是层次遍历,我们就要一层一层的遍历。

我们先将整个树的根入队列,然后将子树的有意义的元素进队列。

这样一层一层地将有意义的元素压入队列中,同时呢,因为队列先进后出的特点,我们本来就是一层一层地从左到右压入,在循环的过程中,作为父节点的元素就会弹出并输出。就是这么巧妙的原理。

代码如下

void levelwise(BTNodePtr paraTreePtr){
    //Use a queue to manage the pointers
    char tempString[100];
    int i = 0;
    QueuePtr tempQueuePtr = initQueue();
    BTNodePtr tempNodePtr;
    enqueue(tempQueuePtr, paraTreePtr);
    while(!isQueueEmpty(tempQueuePtr)) {
        tempNodePtr = dequeue(tempQueuePtr);

        //For output.
        tempString[i] = tempNodePtr->element;
        i ++;

        if (tempNodePtr->left != NULL){
            enqueue(tempQueuePtr, tempNodePtr->left);
        }//Of if
        if (tempNodePtr->right != NULL){
            enqueue(tempQueuePtr, tempNodePtr->right);
        }//Of if
    }//Of while
    tempString[i] = '\0';

    printf("Levelwise: %s\r\n", tempString);
}//Of levelwise

 5.测试程序及结果

int main(){
    BTNodePtr tempHeader;
    tempHeader = constructBTNode('c');
    printf("There is only one node. Preorder visit: ");
    preorder(tempHeader);
    printf("\r\n");

    char* tempString = "acde#bf######";

    tempHeader = stringToBTree(tempString);
    printf("Preorder: ");
    preorder(tempHeader);
    printf("\r\n");
    printf("Inorder: ");
    inorder(tempHeader);
    printf("\r\n");
    printf("Postorder: ");
    postorder(tempHeader);
    printf("\r\n");
    printf("Levelwise: ");
    levelwise(tempHeader);
    printf("\r\n");

    return 1;
 }//Of main

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值