我之前粗略的写了一下,但是阅读量不高,此篇文章是我讲过精心修改后得出的,感谢大家一直以来的支持。
本期内容难度较高,我会先和大家一起在理论上探讨堆排序的原理,最后跟大家一起以C语言为基础实现代码。在阅读本片文章前我建议大家本着一遍可能难以理解的心态去阅读,因为这个知识点融合了二叉树和排序的内容,所以对基础要求较高,希望本篇文章能够帮助到大家!
堆排序的性质
性质:在完全二叉树中,子结点的键值或索引总是小于(或者大于)它的父节点
如图:便是在一组数中堆排序(大顶堆)的最终形态。

大顶堆
堆排序的原理
实现逻辑:
① 先将初始的R[0…n-1]建立成最大堆,此时是无序堆,而堆顶是最大元素。
② 再将堆顶R[0]和无序区的最后一个记录R[n-1]交换,由此得到新的无序区R[0…n-2]和有序区R[n-1],且满足R[0…n-2].keys ≤ R[n-1].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
④ 直到无序区只有一个元素为止。
简单点就是如下图:

这是小顶堆的实现。
堆实现的要点
实现堆排序需要解决两个问题:
1、如何由一个无序序列建成一个堆?
2、如何在输出堆顶元素之后,调整剩余元素成为一个新的堆?

注意:如果不满足结构性和有序性那么就不能够实现堆。
由一个无序序列建成一个堆之前,如何满足堆的有序性呢?就是建堆的过程。
建堆
建堆又叫有序性的实现。
我们可以思考一下,如果我们排升序是大堆还是小堆 —— 大堆,为什么呢?
选择排序,本质就是通过堆来选数,如果是建小堆,最小数在堆顶,已经被选出来了。那么在剩下的数中再去选数,但是剩下树结构都乱了,需要重新建堆才能选出下一个数,建堆的时间复杂度是0(N),那么这样不是不可以,但是堆排序就没有效率优势了。
建堆的过程:

建堆的实现:
那么我们将理论转换为代码就是做一个向下调整函数。
//向下调整
void AdjustDwon(int* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1; // 默认是左孩子
while (child < n)
{
// 1、选出左右孩子中大的那一个
if (child + 1 < n && a[child + 1] > a[child])
{
child += 1;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}堆排序
有同学可能会觉得网络上的图太麻烦了,那我们就自己做一个简单的:
简而言之就是:
第一个和最后一个交换,把他不看做堆里面前n-1个数向下调整,选出次大的数,再跟倒数第二个位置交换

堆排序
那么左右子树不是小堆,就不能直接使用向下调整算法了!怎么办?倒着从最后一颗子树开始调。
再分析倒着走,也子不需要调,从倒数最后一个非叶子的子树开始调也就是8
有了基础了解以后,我们在试着分析一下上图,其实还是比较清晰的。

我们试着实现一下代码:
// 堆排序
void HeapSort(int* a, int n)
{
//建堆
int i = 0;
for (i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDwon(a, n, i);
}
//排升序是大堆还是小堆 —— 大堆
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
AdjustDwon(a,end, 0);
end--;
}
}测试
到底能不能行,我们测试见真章。
void TestInsertSort1()
{
int a[] = { 2,1,5,6,9,3,7,8 };
HeapSort(a, sizeof(a) / sizeof(int));
Print(a, sizeof(a) / sizeof(int));
}
int main()
{
TestInsertSort1();
return 0;
}结果为:

这样我们就实现了升序,感兴趣的可以试着实现降序。
降序代码:
//降序
void AdjustDwon(int* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1; // 默认是左孩子
while (child < n)
{
// 1、选出左右孩子中大的那一个
if (child + 1 > n && a[child + 1] < a[child])
{
child += 1;
}
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}降序结果为:

总结
我们用C语言成功实现了堆排序,但是本篇内容难度较高,建议大家可以多看几遍。我初学的时候也对这个堆排序犯迷糊,但是多学几遍还是可以学会的。希望通过本篇的学习大家能够有所收获。
欢迎大家点赞和收藏哦!
文章详细介绍了堆排序的原理,包括大顶堆的性质,以及堆排序的实现步骤。通过建堆、调整和交换过程,阐述了如何使用C语言编写堆排序算法,同时提供了升序和降序的代码示例。建议读者带着可能难以一次理解的心态去阅读,以充分掌握这一相对复杂的排序算法。
3365





