题目描述
共享单车走进烟台,小明决定尝试。小明启动共享单车 App,轻松地找到附近的单车。那么问题来了,到最近的那辆单车,小明大约要走多少米呢?
现在简化问题。将地图设定成一个由 100×100100 \times 100100×100 米的像素块组成的二维平面区域。如果一个方块内有单车,则像素块显示为字符 x
;如果此方块内是可以通行的路,则显示为 .
;再如果方块是建筑物,则显示为 *
,建筑物不能通行。
小明在地图上的位置显示为 o
,可以朝,“上”、“下”、“左”,“右”,“左上”,“左下”,“右上”,“右下”八个方向走。下图所示为一个小明站在像素方块 O
,如果小明向右走到 X
,则走 100100100 米;如果向右上走,则走 141141141 米(不需要开方)。
假设小明和单车都在方块的中央。现在给出 TTT 幅根据以上规则建立的地图,地图行数和列数分别为 nnn 和 mmm,请分别估算小明要走多少米才能到最近的单车?
给出的地图中至少有一辆单车,如果最终无法到达单车的位置,输出 -1
。
输入
第 111 行 TTT,表示下面有 TTT 组测试数据
对于每组测试数据
第 111 行 nnn 和 mmm,表示地图的大小;
第 222 行开始,给出具体的地图 。
输出
TTT 行数据
每行 111 个整数,表示问题的解
输入输出样例
样例输入 #1
这个题的话开始我是使用深搜发现会超时剪枝的话我也没有发现特别好的剪枝方法于是该换广搜
使用优先队列每一次都从队列取出步数最小值剩下的就是模板了
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
int T;
int n,m;
char a[105][105];
int vis[105][105];
int row1,line1;
bool flag;
//int num = 0;
int minnum;
int b[8] = { 0,0,1,-1,1,1,-1,-1 };
int c[8] = {1 ,- 1,0,0,1,-1,1,-1 };
struct node
{
int row;
int line;
int step;
int u;
friend bool operator < (node a, node b)
{
return a.step > b.step;
}
};
priority_queue<node>r;
void bfs()
{
while (!r.empty())
{
if (a[r.top().row][r.top().line] == 'x')
{
flag = true;
minnum = min(minnum, r.top().step);
break;
}
for (int i = 0; i < 8; i++)
{
int nx = r.top().row + b[i];
int ny = r.top().line + c[i];
if (nx >= 0 && ny >= 0 && nx < n && ny < m && vis[nx][ny] == 0 && a[nx][ny] != '*')
{
vis[nx][ny] = 1;
node temp;
temp.row=nx;
temp.line = ny;
temp.u = r.top().u + 1;
if (b[i] == 0 || c[i] == 0)
{
temp.step = r.top().step + 100;
r.push(temp);
}
else
{
temp.step = r.top().step + 141;
r.push(temp);
}
}
}
r.pop();
}
}
int main()
{
cin >> T;
while (T--)
{
flag=false;
cin >> n >> m;
//num = 0;
minnum = 10000000;
memset(vis, 0, sizeof(vis));
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
cin >> a[i][j];
if (a[i][j] == 'o')
{
vis[i][j] = 1;
node start;
start.row = i;
start.line = j;
start.step = 0;
start.u = 0;
r.push(start);
}
}
getchar();
}
bfs();
if (!flag)
cout << "-1" << endl;
else
cout << minnum << endl;
while (!r.empty())
{
r.pop();
}
}
return 0;
}
2
3 8
.....x..
.o...x..
........
8 10
.***......
.***......
.***..x...
..........
.....*****
..o..*****
.......x..
...*******