放一个题目链接在这里1131. 拯救大兵瑞恩 - AcWing题库🤔
思路
这是一个要用到“拆点”的最短路问题,我们发现有这个钥匙的存在,直接用坐标表示一个点的位置所包含的信息量不够,这时候可以考虑再开一个维度比如dist[x][y][state],来表示现在站在了(x,y)这个位置,并且有用state表示的已经取到了。看眼题上说钥匙的种类只有10种,我们就可以用state的二进制表示来存信息,比如00 0000 0001,就表示了现在只有第一种类的钥匙在手上。
现在状态的转移就比较容易写了
动作1:捡钥匙
这是不需要时间的,dist[x][y][state_又捡起这个位置上的所有钥匙] = min(dist[x][y][state_又捡起这个位置上的所有钥匙] , dist[x][y][state])
动作2:走一格
没有墙,或者有门但有钥匙就可以走一步
dist[x+dx][y + dy][state] = min(dist[x][y][state] + 1 , dist[x + dx][y + dy][state])
这样似乎就可以愉快地dp了😝
但因为这个状态转移是有相互依赖关系的,也就是说不是一个拓扑的序(计算A状态之前A所依赖的所有状态的值都已经确定下来了)
举一个简单的例子:
在一个田字格里原地打转,这4个位置就相互依赖了。
所以我们要把这个dp用最短路的算法来解。
上面两种动作就可以看成一个图里的边,dist[x][y][state]就是一个点,现在要求的就是从dist[0][0][0]跑到dist[n - 1][m - 1][随便什么state]的最短路。边长我们看到是只有0和1,就可以用一个双端队列bfs来写(类似dijkstra,但是我们会用一下边只有0,1的性质把dijkstra里插入删除堆过程种排序的过程绕开了,就快一些)
代码
抄yxc的,他写的也太好了
# include<iostream>
# include<cstdio>
# include<algorithm>
# include<deque>
# include<set>
# include<cstring>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 11, M = N * N, E = 400, P = 1 << 10;
int n, m, p, k;
int h[M], e[E], ne[E], w[E], idx;
int g[N][N], key[M]; // 记录当前位置有没有钥匙
int dist[M][P];
bool st[M][P];
set<PII> edges;
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
void build()
{
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
for (int i = 1;i <= n;i ++ )
for (int j = 1;j <= m; j++)
for (int u = 0;u < 4;u ++)
{
int x = i + dx[u], y = j + dy[u];
if(!x || x > n || !y || y > m) continue; // 没有出界
int a = g[i][j], b = g[x][y];
// 不是墙也不是门,是正常的边
if(edges.count({a, b}) == 0) add(a, b, 0);
}
}
int bfs()
{
memset(dist, 0x3f, sizeof dist);
dist[1][0] = 0;
deque<PII> q;
q.push_back({1 , 0});
while(q.size())
{
PII t = q.front();
q.pop_front();
if (st[t.x][t.y]) continue;
st[t.x][t.y] = true;
if(t.x == m * n) return dist[t.x][t.y];
if(key[t.x])
{
int state = t.y | key[t.x];
if(dist[t.x][state] > dist[t.x][t.y])
{
dist[t.x][state] = dist[t.x][t.y];
q.push_front({t.x, state});
}
}
for (int i = h[t.x]; i != -1;i = ne[i])
{
int j = e[i];
if(w[i] && !(t.y >> w[i] - 1 & 1)) continue;
if(dist[j][t.y] > dist[t.x][t.y] + 1)
{
dist[j][t.y] = dist[t.x][t.y] + 1;
q.push_back({j, t.y});
}
}
}
return -1;
}
int main()
{
cin >> n >> m >> p >> k;
for(int i = 1 , t = 1; i <= n; i++)
for(int j = 1; j <= m;j ++)
g[i][j] = t ++;
memset(h, -1, sizeof h); // 初始化
while(k --)
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
int a = g[x1][y1], b = g[x2][y2];
edges.insert({a, b}) , edges.insert({b, a});
if(c) add(a, b, c), add(b, a, c);
}
build();
int s;
cin >> s;
while(s --)
{
int x, y, id;
cin >> x >> y >> id;
key[g[x][y]] |= 1 << id - 1;
}
cout << bfs() << endl;
return 0;
}