最大公约数、最小公倍数

基本的思路:

我们可以通过在质数的思路,将两个数字的所有因子都存在一个数组中,然后将其两个数组的元素比较,寻找相同的最大数。

比如24和15。

24的因子有:1、2、3、4、6、8、12、24

15的因子有:1、3、5、15

 通过循环遍历比较

具体的比较思路是,1和1相同,将1存入到公因子变量中,两个数组下标都自增,当到2、3时,15的数组下标不动,将24的因子数组下标自增,此时3、3相同,将3覆盖公因子变量,两个数组下标都自增。4、5的时候,4小,24因子数组下标自增,15因子数组不动。当6、5的时候,24的因子数组的下标变量不动,15数组的下标变量自增.......剩下的比较思路与前面一致。当任意一个数组的下标值到达临界值时,另一个因子数组的值比较到大于等于时,结束比较。(15的因子数组访问到15时,24因子数组访问到8,再往后直到24时,停止。3为其最大公因子)


奇妙算法

欧几里得_辗转相除法

通过几何角度的理解更好。

如图所示,将求最大公因子转化为在长宽已知的长方形中,找到边长最大的正方形,能够将整个长方形铺满。

 将辗转相处法求两个数最大公因子的函数表示为:gcd(int a,int b);

那么通过分析图片。

gcd(24,15)----->gcd(15,9)----->gcd(9,6)----->gcd(6,3)----->gcd(3,3)

于是3为最大公因子。

这里只举出24、15的例子。读者可以自行举例。

 如果对上述过程有个大致的了解的话,那么将上述求解的方式转化成编程的表示如下。

这里举出两个写法。分别是循环、递归。

循环

public static int gcd(int a,int b) {
		while(b>0) {
			int temp = a%b;   // 几何角度理解的话,这步得到短边。
			a = b;
			b = temp;
		}
		return a;
	}

递归

public static int gcd(int a,int b) {
		return b==0?a:gcd(b,a%b);
	}

当然,上述几何表示的方法可以知道,这里的参数要满足a>=b。


最小公倍数(lcm)的数学结论: \large (a*b)/gcd(a,b)

代码:

public static int lcm(int a,int b) {  // a>=b
		return a*b/gcd(a,b);   // gcd是求两数最大公因子的函数。
	}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值