前言:
Rdeis几乎是面试必考的内容,而穿透缓存雪崩三兄弟无疑是重点中的重点,本文将帮助你快速梳理里面的知识点,还有面试题巩固~
我们先来一首打油诗热热场:
《缓存三兄弟》
穿透无中生有key,布隆过滤null隔离。
缓存击穿过期key, 锁与非期解难题。
雪崩大量过期key,过期时间要随机。
面试必考三兄弟,可用限流来保底。
一、缓存穿透:
例:
一个get请求:api/news/getById/1
·什么是缓存穿透:
如果别人知道了我的请求路径,恶意查询一个不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致每次请求都查数据库。导致数据库被击垮或宕机。
·解决方案一:
缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存
{key:1,value:null}
··优点:简单
··缺点:消耗内存,可能会发生不一致的问题
·解决方案二:
在缓存之前加一层布隆过滤器,没有什么是加一层解决不了滴~
布隆过滤器:
bitmap(位图):相当于是一个以(bit)位为单位的数组,数组中每个单元只能存储二进制数0或1
布隆过滤器作用:布隆过滤器可以用于检索一个元素是否在一个集合中。
··优点:内存占用较少,没有多余key
··缺点:实现复杂,存在误判
问:你能介绍一下布隆过滤器吗?
候选人:嗯,是这样的。布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是Redisson实现的布隆过滤器。它的底层原理是,先初始化一个比较大的数组,里面存放的是二进制0或1。一开始都是0,当一个key来了之后,经过3次hash计算,模数组长度找到数据的下标,然后把数组中原来的0改为1。这样,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。当然,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%。其实这个误判是必然存在的,要不就得增加数组的长度。5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。
二、缓存击穿:
·什么是缓存击穿:
给某一个key设置了过期时间,当key过期的时候,恰好这时间点对这个key有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮。
解决方案一:互斥锁(强一致,但性能差)
解决方案二:逻辑过期(高可用,但性能优)
逻辑过期就是加一个超时时间字段,实现“逻辑过期”
问:什么是缓存击穿?怎么解决?
候选人:嗯!缓存击穿的意思是,对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这个时间点对这个Key有大量的并发请求过来。这些请求发现缓存过期,一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。解决方案有两种方式:
第一种方案,可以使用互斥锁:当缓存失效时,不立即去load db,先使用如 Redis 的 SETNX 去设置一个互斥锁。当操作成功返回时,再进行 load db的操作并回设缓存,否则重试get缓存的方法。
第二种方案是设置当前key逻辑过期,大概思路如下:
- 在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间;
- 当查询的时候,从redis取出数据后判断时间是否过期;3) 如果过期,则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据可能不是最新的。当然,两种方案各有利弊:如果选择数据的强一致性,建议使用分布式锁的方案,但性能上可能没那么高,且有可能产生死锁的问题。如果选择key的逻辑删除,则优先考虑高可用性,性能比较高,但数据同步这块做不到强一致。
三、缓存雪崩:
·什么是缓存雪崩:
缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
1.给不同的Key的TTL添加随机值
2.利用Redis集群提高服务的可用性
(哨兵模式、集群模式)
3.给缓存业务添加降级限流策略
(ngxin或spring cloud gateway)
4.给业务添加多级缓存
(Guava或Caffeine)
问: 什么是缓存雪崩?怎么解决?
候选人:嗯!缓存雪崩意思是,设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重而雪崩。与缓存击穿的区别是:雪崩是很多key,而击穿是某一个key缓存。解决方案主要是,可以将缓存失效时间分散开。比如,可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机。这样,每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件