Codeforces Round 928 G. Vlad and Trouble at MIT

该篇文章描述了如何使用树形动态规划方法解决一个代码竞赛问题,涉及在一棵树中,给定节点的三种标记(CSP、P、S),需要找到最少断开多少条边以满足P不连接到S的条件,同时计算代价并实现CSP节点状态的动态更新。
摘要由CSDN通过智能技术生成

原题链接:Problem - G - Codeforces

题目大意:一颗树,一个n个节点,每个节点上有一种标记,共有三种标记分别是CSP,要求不能让P连接到S,断开一条边的代价为1,最少需要断开几条边?

思路:树形dp,dp数组的含义是以当前点为根的子树,需要付出多少代价。在进行dfs的时候,对于任意一个点,它的代价是由它连接的点与它的关系和它的连接点的代价构成的,例如一个点是S,那么它的代价是和它相连的P的数目加上和它相连的点自己的代价,P和S同理。特别的是C,如果和它相连的P比较多,那么它就变成P,如果S比较多那么就变成S,如果一样多那么就不变。C变化可以在讨论C父亲的时候正确算出代价。

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define endl '\n' 
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll,char> pii;
const int N=1e6+10,mod=1e9+7;
ll h[N],e[N],idx,ne[N];
char p[N];
ll dp[N];
void add(ll a,ll b)
{
	e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dfs(ll x,ll fa)//x是当前点,fa是父节点 
{
	ll sum=0;
	ll sum1=0,sum2=0;
	for(ll i=h[x];~i;i=ne[i])
	{
		ll j=e[i];
		if(j==fa)continue;
		dfs(j,x);//先处理当前点连接点的代价 
		sum+=dp[j];
		if(p[j]=='P')sum1++;//记录连接点的P和S的数量 
		if(p[j]=='S')sum2++;
	}
	if(p[x]=='P')
	{
		dp[x]=sum+sum2;//sum2是当前点和连接点的关系,sum是连接点的代价 
	}
	if(p[x]=='S')
	{
		dp[x]=sum+sum1;
	}
	if(p[x]=='C')
	{
		dp[x]=sum+min(sum1,sum2);
		if(sum1>sum2)p[x]='P'; 
		if(sum1<sum2)p[x]='S';
	}
}
int main()
{
    ios::sync_with_stdio(NULL);cin.tie(0),cout.tie(0);
    ll t;cin>>t;
    while(t--)
    {
    	ll n;cin>>n;
    	for(int i=0;i<=n+10;i++)h[i]=-1,dp[i]=0;//初始化头指针和dp数组 
    	idx=0;//初始化 
    	for(int i=2;i<=n;i++)
    	{
    		ll a;cin>>a;
    		add(a,i);
    		add(i,a); 
		}
		for(int i=1;i<=n;i++)cin>>p[i];
		dfs(1,-1);
		cout<<dp[1]<<endl;
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值