题意:有n个圆,可以调整每个圆的半径,要求相切的圆改变后仍然相切,不能有圆相互覆盖,并且调整之后全部圆半径的总和变小。
思路:一个圆的半径增大,那么和这个圆相切的圆的半径就会减小反之相同,二个相切的圆可以理解成二个相连接的点。那么就可以对每一个联通块中的点进行染色法判断,如果判断成功,那么就判断,不同颜色的数量是否相同,如果不相同那么就输出yes。
//冷静,冷静,冷静
//调不出来就重构
#pragma GCC optimize(2)
#pragma GCC optimize("O3")
#include<bits/stdc++.h>
#define endl '\n'
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll,ll> pii;
const int N=1e6+10,mod=998244353;
struct node
{
ll x,y,r;
}p[N];
vector<ll> mp[N];
ll st[N];
ll cnt[2];
bool dfs(ll x,ll zhi)
{
st[x]=zhi;
cnt[zhi]++;
bool l=1;
for(auto j:mp[x])
{
if(st[j]==-1)
{
if(!dfs(j,1-zhi))
{
l=0;
}
}
if(st[x]==st[j])l=0;
}
return l;
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll n;cin>>n;
for(int i=1;i<=n;i++)
{
cin>>p[i].x>>p[i].y>>p[i].r;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
ll dx=p[i].x-p[j].x,dy=p[i].y-p[j].y,r=p[i].r+p[j].r;
if(dx*dx+dy*dy==r*r)
{
mp[i].push_back(j);
mp[j].push_back(i);
}
}
}
memset(st,-1,sizeof(st));
for(int i=1;i<=n;i++)
{
if(st[i]!=-1)continue;
cnt[0]=cnt[1]=0;
if(!dfs(i,1))continue;
if(cnt[0]!=cnt[1])
{
cout<<"YES";
return 0;
}
}
cout<<"NO";
return 0;
}