Dijkstra算法
题目
【模板】单源最短路径(弱化版)
题目背景
本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779。
题目描述
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。
输入格式
第一行包含三个整数 n , m , s n,m,s n,m,s,分别表示点的个数、有向边的个数、出发点的编号。
接下来 m m m 行每行包含三个整数 u , v , w u,v,w u,v,w,表示一条 u → v u \to v u→v 的,长度为 w w w 的边。
输出格式
输出一行 n n n 个整数,第 i i i 个表示 s s s 到第 i i i 个点的最短路径,若不能到达则输出 2 31 − 1 2^{31}-1 231−1。
样例 #1
样例输入 #1
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
样例输出 #1
0 2 4 3
提示
【数据范围】
对于
20
%
20\%
20% 的数据:
1
≤
n
≤
5
1\le n \le 5
1≤n≤5,
1
≤
m
≤
15
1\le m \le 15
1≤m≤15;
对于
40
%
40\%
40% 的数据:
1
≤
n
≤
100
1\le n \le 100
1≤n≤100,
1
≤
m
≤
1
0
4
1\le m \le 10^4
1≤m≤104;
对于
70
%
70\%
70% 的数据:
1
≤
n
≤
1000
1\le n \le 1000
1≤n≤1000,
1
≤
m
≤
1
0
5
1\le m \le 10^5
1≤m≤105;
对于
100
%
100\%
100% 的数据:
1
≤
n
≤
1
0
4
1 \le n \le 10^4
1≤n≤104,
1
≤
m
≤
5
×
1
0
5
1\le m \le 5\times 10^5
1≤m≤5×105,
1
≤
u
,
v
≤
n
1\le u,v\le n
1≤u,v≤n,
w
≥
0
w\ge 0
w≥0,
∑
w
<
2
31
\sum w< 2^{31}
∑w<231,保证数据随机。
Update 2022/07/29:两个点之间可能有多条边,敬请注意。
代码
#include<bits/stdc++.h>
using namespace std;
const int max_n = 10001;//最大顶点数量
const int max_m = 10000001;//最大边数量
const int inf = pow(2,31)-1;//用于初始化
int n, m;//顶点数和边数
int head[max_n];
struct {
int to, w, next;
}edge[max_m];
int cnt = 1;
void add(int u,int v,int w) {//加边
edge[cnt].w = w;
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
int dis[max_n];
struct Node {
int x, dis;
bool operator <(const Node& b) const//优先队列默认为从大到小,如果想要反过来,就在重载运算符的时候反过来
{
return this->dis>b.dis;
}
};
void Dijkstra(int s) {
//初始化
for (int i = 1; i <= n; i++) {
dis[i] = inf;
}
dis[s] = 0;
priority_queue<Node> q;//创建优先队列
q.push({ s,0 });
while (!q.empty()) {
//通过优先队列直接找到dis最小的点t
int t = q.top().x;
int t_dis = q.top().dis;
q.pop();
if (t_dis > dis[t]) continue;//队列中出现重复值,直接跳过
for (int i = head[t]; i != -1; i = edge[i].next) {//用顶点t去更新dis数组
if (dis[edge[i].to] > t_dis + edge[i].w) {
dis[edge[i].to] = t_dis + edge[i].w;
q.push({ edge[i].to,dis[edge[i].to] });
}
}
}
}
int main() {
cin >> n >> m;
int s;
cin >> s;
memset(head, -1, sizeof(head));
for (int i = 1; i <= m; i++) {
int u, v, w;
cin >> u >> v >> w;
add(u, v, w);
}
Dijkstra(s);
for (int i = 1; i <= n; i++) {
cout << dis[i] << " ";
}
return 0;
}