求三阶及三阶以上的行列式就需要了解行列式的具体算法
定义
矩阵的行列式,determinate(简称det),是基于矩阵所包含的行列数据计算得到的一个标量。是为求解线性方程组而引入的。
1.0、了解计算行列式的必须项
余子式:在 n 阶行列式中,把某个元素所在的行列都去掉之后,剩下的 n-1 阶行列式就叫做该元素的余子式:
代数余子式:余子式再乘以-1的i+j次方(ij为行列式的行和列)
1.1、行列式的具体算法
- 行列式按第一行展开:
- 循环求各个元素与其对应代数余子式乘积的和。
具体代码如下:
#include <stdio.h>
#define N 10 // 定义最大阶数
// 计算代数余子式的函数
void getSubMatrix(int matrix[N][N], int subMatrix[N][N], int row, int col, int n) {
int i, j;
int p = 0, q = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (i != row && j != col) {
subMatrix[p][q++] = matrix[i][j];
if (q == n - 1) {
q = 0;
p++;
}
}
}
}
}
// 计算行列式的函数
int determinant(int matrix[N][N], int n) {
int i, j;
int subMatrix[N][N];
int det = 0;
int sign = 1;
if (n == 1) { // 递归终止条件:1 阶矩阵的行列式为其唯一元素的值
return matrix[0][0];
} else {
for (i = 0; i < n; i++) {
getSubMatrix(matrix, subMatrix, 0, i, n); // 计算代数余子式的子矩阵
det += sign * matrix[0][i] * determinant(subMatrix, n - 1); // 递归计算行列式的值
sign = -sign; // 更新符号位
}
}
return det;
}
int main() {
int n;
int matrix[N][N];
int det;
printf("请输入方阵的阶数:");
scanf("%d", &n);
if (n > N || n <= 0) {
printf("错误!请重新输入一个合法的阶数(1-%d)。\n", N);
return 0;
}
printf("请输入 %d 阶方阵的元素:\n", n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("元素 a%d%d: ", i + 1, j + 1);
scanf("%d", &matrix[i][j]);
}
}
det = determinant(matrix, n); // 计算行列式的值
printf("\n行列式的值为:%d\n", det);
return 0;
}