大学线性代数行列式求值

求三阶及三阶以上的行列式就需要了解行列式的具体算法

定义
      矩阵的行列式,determinate(简称det),是基于矩阵所包含的行列数据计算得到的一个标量。是为求解线性方程组而引入的。

1.0、了解计算行列式的必须项

余子式:在 n 阶行列式中,把某个元素所在的行列都去掉之后,剩下的 n-1 阶行列式就叫做该元素的余子式:
      

代数余子式:余子式再乘以-1的i+j次方(ij为行列式的行和列)

 1.1、行列式的具体算法

  1. 行列式按第一行展开:
  2. 循环求各个元素与其对应代数余子式乘积的和。

 具体代码如下:

#include <stdio.h>

#define N 10 // 定义最大阶数

// 计算代数余子式的函数
void getSubMatrix(int matrix[N][N], int subMatrix[N][N], int row, int col, int n) {
    int i, j;
    int p = 0, q = 0;

    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            if (i != row && j != col) {
                subMatrix[p][q++] = matrix[i][j];

                if (q == n - 1) {
                    q = 0;
                    p++;
                }
            }
        }
    }
}

// 计算行列式的函数
int determinant(int matrix[N][N], int n) {
    int i, j;
    int subMatrix[N][N];
    int det = 0;
    int sign = 1;

    if (n == 1) { // 递归终止条件:1 阶矩阵的行列式为其唯一元素的值
        return matrix[0][0];
    } else {
        for (i = 0; i < n; i++) {
            getSubMatrix(matrix, subMatrix, 0, i, n); // 计算代数余子式的子矩阵

            det += sign * matrix[0][i] * determinant(subMatrix, n - 1); // 递归计算行列式的值
            sign = -sign; // 更新符号位
        }
    }

    return det;
}

int main() {
    int n;
    int matrix[N][N];
    int det;

    printf("请输入方阵的阶数:");
    scanf("%d", &n);

    if (n > N || n <= 0) {
        printf("错误!请重新输入一个合法的阶数(1-%d)。\n", N);
        return 0;
    }

    printf("请输入 %d 阶方阵的元素:\n", n);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            printf("元素 a%d%d: ", i + 1, j + 1);
            scanf("%d", &matrix[i][j]);
        }
    }

    det = determinant(matrix, n); // 计算行列式的值

    printf("\n行列式的值为:%d\n", det);

    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值