无穷大与无穷小【高数笔记】

本文通过实例解析了x趋向于某个值时,1/x、arctan(1/x)以及e^(1/x)的极限行为,强调了无穷小与无穷大在函数极限中的区别,指出并非所有极限不存在的情况都意味着无穷大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【定义】

当x-->?, f(x)无限趋向于0,则称f(x) 为x-->?的无穷小;当x-->?, f(x)无限趋向于无穷,则称f(x) 为x-->?的无穷大

【要点】

 ?表示x趋向于x0,或是无穷;无穷大或小,针对的是f(x),而极限针对的是常数A;对于无穷而言,并不是讲极限不存在,则f(x)一定是x-->?的无穷大,即,极限不存在,包含了无穷大这种情况,但是两者并不等价

【举例】

1,X--> 无穷,1/x 的极限

当x-->正无穷,无限接近于0

当x-->负无穷,无限接近于0

所以,X-->无穷,1/x的极限是0

既,1/x是X-->无穷时的无穷小,且极限存在

 

2,X--> 0, 1/X的极限

当接近X--> 0+,1/x无限接近正无穷

当接近X--> 0-,1/x无限接近负无穷

所以,X-->0,1/x极限不存在

又因为,1/x无限接近正负无穷

既,X--> 0,1/x极限不存在,但1/x是X-->0时的无穷大

 

3,x-->0,arctan(1/x)的极限

由题可知,此函数是一个复合函数,分两大步,由内而外

第一步:当X-->0+,极限无限接近于正无穷;当X--> 0-,极限无限接近于负无穷

第二步:令t=1/x,当t接近于正无穷,arctan(t)极限接近于π/2,当t接近于负无穷,arctan(t)极限无限接近于-π/2

又因为,不满足无穷大的条件

既,X-->0,arctan(1/x)极限不存在

 

4,x-->0,e的(x分之1)次方的极限

由题可知,此函数是一个复合函数,分两大步,由内而外

第一步:当X-->0+,1/x极限无限接近于正无穷;当X-->0-,1/x极限无限接近于负无穷

第二步:令t=1/x,当t接近于正无穷,e的t次方的极限接近于正无穷,当t接近于负无穷,e的t次方的极限无限接近于  0

又因为,不满足无穷大的条件

既,X-->0,e的(x分之1)次方的极限不存在

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值