建堆时间复杂度

片头

嗨!小伙伴们,大家好! 在上一篇中,我们学习了什么是堆,以及如何实现堆。这一篇中,我将继续带领大家来深入学习堆,准备好了吗?我要开始咯!

首先,大家还记得这个代码吗?

//堆的初始化
void HeapInit(Heap* hp) {
	assert(hp);		//断言,防止传入空指针
	hp->arr = NULL; //动态数组为空
	hp->capacity = 0;//初始时,数组的容量为0
	hp->size = 0;	 //初始时,数组的大小为0
}

哈哈,是的!这就是我们初始化堆的代码,那我们今天同样是初始化堆,但是思路和之前不太一样哦!

首先,我们定义一个接口函数 HeapCreate,里面包含3个参数,分别是 Heap* hp, ElemType* arr, int n,函数的返回类型为 void

void HeapCreate(Heap* hp,ElemType* a,int n);

三个参数的意义如下:

  • Heap* hp:  指向堆这个结构体的指针,用来对堆进行修改操作
  •  ElemType* arr: 指向外界提供数组的指针
  • int n: n表示要在arr数组拷贝的元素个数

关于这个接口函数,具体实现代码如下:

//堆的构建
void HeapCreate(Heap* hp, ElemType* a, int n) {
	assert(hp);            //断言,防止传入空指针
	assert(a);             //断言,防止传入空指针

//对堆这个结构体的成员变量arr开辟一块空间(堆的本质就是数组)
	hp->arr = (ElemType*)malloc(sizeof(ElemType)*n);//开辟n个大小的空间
	if (hp->arr == NULL) {    //如果内存空间不足
		perror("malloc fail!\n");
		exit(1);
	}
	memcpy(hp->arr, a, n * sizeof(ElemType));//将数组a的所有元素拷贝到堆的arr中
	hp->capacity = n;//初始化堆的容量为n
	hp->size = n;    //初始化堆的元素个数为n

	//建堆
	//向上调整建堆
	/*for (int i = 1; i < hp->size; i++) {        //从第二个结点开始挪动
		AdjustUp(hp->arr, i);
	}*/
	//向下调整建堆
	for (int i = (hp->size - 1 - 1) / 2; i >= 0; i--) {    //从倒数第一个非叶子结点开始挪动
		AdjustDown(hp->arr, hp->size, i);
	}
}

向上调整建堆的代码如下:

//交换
void Swap(int* a, int* b) {
	int temp = *a;
	*a = *b;
	*b = temp;
}

//向上调整算法
void AdjustUp(ElemType* arr, int child) {
	assert(arr);//断言,防止传入空指针
	int parent = (child - 1) / 2;//父节点 = (子节点-1)/2
	while (child > 0)//当子节点还没有遍历到根节点
	{
		if (arr[child] < arr[parent]) //如果子节点比父节点小
		{
			Swap(&arr[child], &arr[parent]);//交换
			child = parent;//将父节点赋给子节点
			parent = (parent - 1) / 2;//寻找下一个父节点
		}
		else //如果子节点比父节点大,退出循环
		{
			break;
		}
	}
}

向下调整建堆的代码如下:

//交换
void Swap(int* a, int* b) {
	int temp = *a;
	*a = *b;
	*b = temp;
}

//向下调整算法
void AdjustDown(ElemType* arr, int size, int parent) {
	assert(arr);
	int child = parent * 2 + 1;//假设左孩子比右孩子小
	while (child < size) 
	{		//还没有遍历到叶子结点的时候,进入循环
		if (child + 1 < size && arr[child + 1] < arr[child])
		{	//如果右孩子存在,并且右孩子的值小于左孩子
			child = child + 1;
		}
		if (arr[child] < arr[parent])
		{	//如果子节点小于父节点,交换
			Swap(&arr[parent], &arr[child]);
			parent = child;//将子节点赋给父节点
			child = parent * 2 + 1;//寻找下一个子节点
		}
		else
		{	//如果父节点小于子节点,退出循环
			break;
		}
	}
}

测试代码如下:

内容我们很熟悉,但是同样都是建堆,向上调整建堆和向下调整建堆有什么差异呢? 它们两个进行比较,哪一个算法更优一点呢?

不急,且听我慢慢道来~

我们先来看看向上调整建堆

我们以满二叉树来举例子,因为它是一种特殊的二叉树,其中每个非叶子节点都有两个子节点,并且所有叶子节点都在同一层上。

二叉树的每一层结点数目如下:

我们现在采用向上调整建堆的思想,创建的第一个结点可以看成小堆(大堆),因此,我们不需要对第一个结点作任何处理。创建第二个结点,我们就需要向上调整1次,创建第三个结点,我们就需要向上调整1次,因此,第二层总共有2个结点,我们需要调整1次,也就是 2^1*1。

因此,设累和向上调整F(H), F(H) = F(h1)+F(h2)+F(h3)+F(h4)+.......+F(h-1)+F(h) ,其中,F(h) = 每层结点个数 * 向上调整次数 

所以,F(H) = 2^1*1 + 2^2*2 + 2^3*3 + ...... + 2^(h-2)*(h-2) + 2^(h-1)*(h-1) ,我们用错位相减法来求解此题

 2*F(H) = 2^2*1 + 2^3*2 + 2^4*3 + ...... + 2^(h-2)*(h-3)+ 2^(h-1)*(h-2) + 2^(h)*(h-1) 

F(H) = 2^1*1 + 2^2*2 + 2^3*3 + 2^4*4 + ....... + 2^(h-2)*(h-2) + 2^(h-1)*(h-1) 

将两个式子相减:

 2*F(H) - F(H) = -2^1 - 2^2  - 2^3 - 2^4 -  ....... - 2^(h-2) - 2^(h-1) + 2^(h)*(h-1)

我们在等式中补充:-2^0 + 2^0 ,原式变成:-2^1 - 2^2  - 2^3 - 2^4 -  ....... - 2^(h-2) - 2^(h-1) - 2^0 + 2^0 + 2^(h)*(h-1),调换一下顺序,就变成下面这个样子:

 2*F(H) - F(H)  =   - 2^0 - 2^1 - 2^2  - 2^3 - 2^4 -  ....... - 2^(h-2) - 2^(h-1) + 2^0 + 2^(h)*(h-1)

 F(H) = - (2^0 +  2^1 + 2^2 + 2^3 + 2^4 +.......+ 2^(h-2) +  2^(h-1) )+ 2^0 + 2^(h)*(h-1)

【其中,2^0 +  2^1 + 2^2 + 2^3 + 2^4 +.......+ 2^(h-2) +  2^(h-1),可以进行错位相减,设N是树中结点的数量,N = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 +.....+ 2^(h-2) + 2^(h-1) 

   2*N =  2^1 + 2^2 + 2^3 + 2^4 + 2^5 +.....+ 2^(h-2) + 2^(h-1) + 2^(h) 

    2*N - N =  2^(h) - 2^0 = 2^h - 1 

    N  =  2^h - 1, 2^h = N+1, h = log(N+1)    (注意:本来是以2为底数,N+1为真数 ,但是也可以省略底数】 

因此,上述可以化简为:F(H) = - (2^h-1) + 2^0 + 2^(h)*(h-1)  =  -2^h + 1 + 1 + 2^h*(h-1)                F(H)  = 2^h*(h-2) + 2, 将 F(H) 转换成 F(N) , 2^h = N+1,  h =  log(N+1) , F(N) =(N+1)*(log(N+1) -2) +2,F(N) = N*logN , 因此,向上调整建堆的时间复杂度为 O(N*logN)。


好啦,向上调整建堆的时间复杂度我们算出来了,那么向下调整建堆的时间复杂度怎么求呢?

还是以满二叉树来举例:

我们需要向下调整,建堆,最后一层(第h层)的叶子结点可以看作(大堆/小堆),所以我们不挪动叶子结点,因此,从倒数第一个非叶子结点开始挪动(也就是最后一个叶子结点的父节点),也就是第h-1层开始挪动,第h-1层的每一个结点最多向下调整1次,第h-2层的每一个结点最多向下调整2次,第h-3层的每一个结点最多向下调整3次,.........., 第5层的每一个结点最多向下调整h-5次,第4层的每一个结点最多向下调整h-4次,第3层的每一个结点最多向下调整h-3次,第2层的每一个结点最多向下调整h-2次,第1层的每一个结点最多向下调整h-1次。

因此,设累和向下调整F(H), F(H) = F(h1)+F(h2)+F(h3)+F(h4)+.......+F(h-1)+F(h) ,其中,F(h) = 每层结点个数 * 向下调整次数 

所以,F(H) = 2^(h-2)*1 + 2^(h-3)*2 + ...... + 2^3*(h-4) + 2^2*(h-3) + 2^1*(h-2) + 2^0*(h-1),我们用错位相减法来求解此题

 F(H) = 2^(h-2)*1 + 2^(h-3)*2 + ...... + 2^3*(h-4) + 2^2*(h-3) + 2^1*(h-2) + 2^0*(h-1)

2*F(H) = 2^(h-1)*1 + 2^(h-2)*2 + ...... + 2^4*(h-4) + 2^3*(h-3) + 2^2*(h-2) + 2^1*(h-1)

将两个式子相减可得

 2*F(H) -  F(H)  =  2^(h-1)*1 + 2^(h-2)*1 + 2^(h-3)*1 +......+ 2^4 + 2^+ 2^2+ 2^1 - 2^0*(h-1)

F(H)  = 2^(h-1)*1 + 2^(h-2)*1 + 2^(h-3)*1 +......+ 2^4 + 2^+ 2^2+ 2^1 - (h-1)

F(H)  = 2^(h-1)*1 + 2^(h-2)*1 + 2^(h-3)*1 +......+ 2^4 + 2^+ 2^+ 2^1 - h + 1 (这个“+1”可以看成 2^0), 我们可以调换一下顺序:

F(H)  = 2^0 + 2^+ 2^2 + 2^+ 2^4 +......+ 2^(h-3)*1 + 2^(h-2)*1 + 2^(h-1)*1 - h

【其中,2^0 +  2^1 + 2^2 + 2^3 + 2^4 +.......+ 2^(h-2) +  2^(h-1),可以进行错位相减,设N是树中结点的数量,  N  = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 +.....+ 2^(h-2) + 2^(h-1) 

 2*N =  2^1 + 2^2 + 2^3 + 2^4 + 2^5 +.....+ 2^(h-2) + 2^(h-1) + 2^(h) 

 2*N - N =  2^(h) - 2^0 = 2^h - 1 

 N  =  2^h - 1, 2^h = N+1, h = log(N+1)    (注意:本来是以2为底数,N+1为真数 ,但是也可以省略底数】 

因此,上述可以化简为:F(H) = 2^h - 1 - h, 我们将 F(H) 转换为 F(N) , F(N) = (N+1) -1 - log(N+1)  , F(N) = N - log(N+1) , 因此,向下调整建堆的时间复杂度为 O(N)。


向上调整建堆的时间复杂度为 O(N*logN) ,向下调整建堆的时间复杂度为 O(N)。 那肯定是向下调整建堆的时间复杂度更小, 因此我们会选择向下调整建堆。

哈哈哈,还有一种简便方法,那就是直接看图,不需要计算~  你想想,假设树的高度为h, 满二叉树的最后一层叶子结点有多少个? 前面我们画图分析过,最后一层叶子结点有 2^(h-1) 个, 那么整棵二叉树的结点总数有多少? 设N是树中结点的数量, N  =  2^h - 1,我们可以看到, 2^(h-1) 和2^h 只相差2倍, 换句话说,最后一层的叶子结点占结点总数的1/2,如果我们采用向上调整算法,相当于整棵二叉树一半的结点都要挪动,是不是很费时? 而如果我们采用向下调整算法,最后一层的叶子结点保持不动,只需要移动上面的结点,是不是要轻松很多?

设累和调整F(H), F(H) = F(h1)+F(h2)+F(h3)+F(h4)+.......+F(h-1)+F(h) ,其中,F(h) = 每层结点个数 * 调整次数    , 采用向上调整算法, 相当于 每层结点个数多 * 调整次数多(简称: 多*多),采用向下调整算法,相当于 每层结点个数多 * 调整次数少 或者 每层结点个数少 * 调整次数多(简称: 少*多 或者 多*少)

分析以上情况,我们可以得出:向下调整算法优于向上调整算法,所以如果要建堆,尽量选择向下调整算法。

片尾

今天我们学习了建堆的时间复杂度,希望看完这篇文章能对友友们有所帮助 ! ! !

点赞收藏加关注 !  !  !

谢谢大家 !  !  !

  • 17
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值