中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。
- 例如
arr = [2,3,4]
的中位数是3
。 - 例如
arr = [2,3]
的中位数是(2 + 3) / 2 = 2.5
。
实现 MedianFinder 类:
-
MedianFinder()
初始化MedianFinder
对象。 -
void addNum(int num)
将数据流中的整数num
添加到数据结构中。 -
double findMedian()
返回到目前为止所有元素的中位数。与实际答案相差10-5
以内的答案将被接受。
示例 1:
输入 ["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"] [[], [1], [2], [], [3], []] 输出 [null, null, null, 1.5, null, 2.0] 解释 MedianFinder medianFinder = new MedianFinder(); medianFinder.addNum(1); // arr = [1] medianFinder.addNum(2); // arr = [1, 2] medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2) medianFinder.addNum(3); // arr[1, 2, 3] medianFinder.findMedian(); // return 2.0
提示:
-105 <= num <= 105
- 在调用
findMedian
之前,数据结构中至少有一个元素 - 最多
5 * 104
次调用addNum
和findMedian
代码展示:
class MedianFinder {
PriorityQueue<Integer> pq1;
PriorityQueue<Integer> pq2;
public MedianFinder() {
//创建小顶堆
pq1 = new PriorityQueue<>();
//创建大顶堆
pq2 = new PriorityQueue<>((a, b) -> b - a);
}
public void addNum(int num) {
//相等添加在左边
if(pq1.size() == pq2.size()){
pq2.offer(num);
pq1.offer(pq2.poll());
}else{
//不相等添加在右边
pq1.offer(num);
pq2.offer(pq1.poll());
}
//添加数据时记得,先添加到另一边,在弹出来添加到本堆中
}
public double findMedian() {
//相等说明一边一半,中位数为两个堆顶元素相加除2
if(pq1.size() == pq2.size()){
return (pq1.peek() + pq2.peek()) / 2.0;
}else{
//不等说明中位数为pq1的堆顶元素
return pq1.peek();
}
}
}
这道题只要掌握了大顶堆和小顶堆的基本用法,就可以会个大概了,后面只要注意如何去添加数据,和如何取出数据中的元素就可以解决这道题目了。