自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

歆歆~黯了

知其不可奈何,而安之若命。

  • 博客(71)
  • 收藏
  • 关注

原创 机器学习课程设计报告 —— 基于口红数据集的情感分析

在本次课程设计中,我们深入研究了基于机器学习的情感分析,特别关注了KNN(K-近邻)和GaussianNB(高斯朴素贝叶斯)两种模型的应用与性能比较。通过构建情感分析系统,我们能够自动识别和分类文本数据中的情感倾向,这对于社交媒体监控、市场研究和客户反馈分析等领域具有重要价值。

2025-05-25 22:29:03 1157 1

原创 基于python的机器学习(九)—— 评估算法(二)

本文系统介绍了机器学习的评估指标与调优方法。评估指标部分详细讲解了分类(准确率、F1等)、回归(MSE、R²等)和聚类(轮廓系数、DBI等)三大类指标的计算与应用。模型调优部分则重点阐述了超参数优化技术,包括网格搜索、随机搜索和贝叶斯优化三种方法,并提供了Python实现示例。

2025-05-24 23:59:17 1259

原创 机器学习课程设计报告 —— 基于二分类的岩石与金属识别模型

本报告设计了一个基于声纳数据的二分类模型,用于区分金属与岩石。首先对208条60维声纳数据进行清洗和标准化处理,通过特征选择降低维度。评估了6种算法,发现KNN和SVM表现最优。经参数调优后,SVM模型(C=1.5,RBF核)在测试集上达到91%准确率。最后通过随机森林分析特征重要性,为资源勘探和水下探测提供了有效解决方案。

2025-05-24 15:27:44 966 1

原创 基于python的机器学习(七)—— 数据特征选择

特征选择是机器学习中的关键步骤,旨在从原始数据中筛选出最相关的特征,以提升模型性能、减少过拟合并降低计算复杂度。特征选择方法主要分为三类:过滤式、包裹式和嵌入式。

2025-05-21 20:01:22 659 1

原创 基于python的机器学习(八)—— 评估算法(一)

评估的核心目标包括验证泛化能力、识别过拟合或欠拟合问题,以及比较不同算法的优劣。常用评估指标有准确率、精确率、召回率、F1分数、ROC曲线和AUC值等;交叉验证技术如K折交叉验证、留一法交叉验证和分层交叉验证。

2025-05-21 19:54:29 1263

原创 基于python的机器学习(六)—— 数据可视化和数据预处理

本文系统介绍了数据可视化和数据预处理中的关键流程。数据可视化部分详细讲解了单一图表,以及多重图表的使用场景和方法。数据预处理探讨了数据清洗(错误值、缺失值、异常值、重复值处理)、数据降维(PCA、LDA、t-SNE)、数据变换(整合、规范化、标准化)以及数据集成,为构建高质量数据集提供全面指导。

2025-04-13 00:37:27 916

原创 基于python的机器学习(五)—— 聚类(二)

k-medoids聚类算法、DBSCAN聚类算法、OPTICS聚类算法

2025-04-13 00:36:37 1527 6

原创 基于python的机器学习(四)—— 聚类(一)

聚类的原理与实现、如何度量距离、层次聚类算法、DataFrame数据结构、k-means聚类算法

2024-11-21 10:55:53 2408 1

原创 基于python的机器学习(三)—— 关联规则与推荐算法

关联规则挖掘基本概念、Apriori算法、FP-Growth算法、推荐系统、协调过滤推荐算法

2024-11-21 10:55:43 1882

原创 基于python的机器学习(二)—— 使用Scikit-learn库

样本及样本划分、利用Sklearn导入或创建数据集、数据预处理、数据降维

2024-11-03 15:35:00 1247

原创 基于python的机器学习(一)—— 基础知识(Scikit-learn安装)

机器学习基础、Scikit-learn 机器学习库(安装)、机器学习的一般过程、(训练集、验证集和测试集)、机器学习常见名词、机器学习的预处理环节

2024-11-03 15:23:40 2498

原创 Python 学习笔记(十三)—— urllib获取网页

介绍urllib库、urllib.request、urllib.parse、urllib.error、urllib.robotparser、unllib.post请求

2024-10-21 23:19:05 1036

原创 Python 学习笔记(十二)—— 网络编程

网络编程的基本概念、IP地址、网络通信协议、Socket套接字、UDP编程实例、TCP编程实例、单工持续通信和双工持续通信

2024-10-21 15:00:46 1929

原创 单片机原理及技术(八)—— 串行口的工作原理及应用

串行通信基础、串行口的结构、串行口的4种工作方式、波特率的制定方法

2024-08-25 02:23:49 2567 2

原创 C++语言学习(八)—— 继承、派生与多态(二)

多继承、多态、运算符重载、赋值兼容规则、虚函数

2024-08-25 01:49:33 825

原创 单片机原理及技术(六)—— 中断系统的工作原理

AT89S51中断技术概述、AT89S51中断系统结构、中断允许与中断优先级的控制、响应中断请求的条件、外部中断的触发方式选择、中断函数

2024-08-20 03:56:45 1790

原创 单片机原理及技术(七)—— 定时器/计数器的工作原理

定时器/计数器的结构、定时器/计数器的4种工作方式、定时器/计数器T0、T1的编程应用

2024-08-20 03:51:50 4112 2

原创 单片机原理及技术(四)—— C51语言程序设计基础(C51编程)

C51语言中的数据类型与存储类型、C51语言的特殊寄存器及变量定义、C51语言的绝对地址访问、C51语言的基本运算、C51语言的分支结构与循环结构

2024-07-21 17:03:10 2445

原创 单片机原理及技术(五)—— 单片机与开关、键盘以及显示器件的接口设计(C51编程)

单片机控制发光二极管显示、开关状态检测、单片机控制LED数码管的显示、按键式键盘

2024-07-21 17:02:12 2073

原创 单片机原理及技术(三)—— AT89S51单片机(二)(C51编程)

AT89S51单片机的并行I/O端口、时钟电路与时序、复位操作和复位电路、AT89S51单片机的最小应用系统、看门狗定时器(WDT)的使用、低功耗节电模式

2024-06-04 23:56:04 2777

原创 C++语言学习(七)—— 继承、派生与多态(一)

派生类的概念、公有继承、派生类的构造和析构、保护成员的引入、改造基类的成员函数、派生类与基类同名成员的访问方式、私有继承和保护继承。

2024-06-04 16:25:41 1187

原创 C++语言学习(五)—— 类与对象(一)

类类型的定义、类成员的访问控制、类类型的使用、构造函数的引入、析构函数的引入、重载构造函数的引入、复制构造函数的引入

2024-05-24 21:55:07 1081

原创 C++语言学习(六)—— 类与对象(二)

对象数组、对象指针、this 指针、类类型作为参数类型的三种形式、静态成员、友元机制、类的组合、数据成员的初始化和释放顺序、常对象与常成员

2024-05-24 17:44:47 1198

原创 单片机原理及技术(二)—— AT89S51单片机(一)(C51编程)

AT89S51单片机的片内硬件结构、AT89S51的引脚功能、AT89S51的CPU、AT89S51单片机存储器的结构

2024-05-19 23:59:27 7990

原创 单片机原理及技术(一)—— 认识单片机(C51编程)

什么是单片机、单片机的发展历史、单片机的特点、MCS-51 系列与 AT89S5x 系列单片机、各种衍生品种的8051单片机

2024-05-19 22:55:24 2735

原创 机器视觉学习(十四)—— 自定义人脸识别(一)

录制人脸识别视频、采样准备工作、自定义人脸识别示例代码、人脸识别常见问题

2024-05-17 20:48:33 1248

原创 机器视觉学习(十三)—— 人脸识别

Haar分类器、人脸识别相关函数讲解、人脸识别示例代码

2024-05-17 08:47:33 1768

原创 C++语言题库(四)—— LX

LX701 平均分计算、LX702 点圆、LX703 统计数字、LX704 三维坐标、LX705 点圆关系、LX706 Car类、LX707 角度的加法、LX708 派生类构造、LX709 N天以后

2024-05-14 15:55:53 849 3

原创 C++语言题库(三)—— PAT

打印点圆与圆柱信息、国际贸易统计、设计一个类CRectangle、定义一个时间类、定义一个Date类、定义一个Time类、设计一个People类、平均成绩、计算若干个学生的总成绩及平均成绩、使用面向对象的方法求长方形的周长

2024-05-12 15:18:20 922

原创 C++语言题库(二)—— PAT

求幂之和、韩信点兵、有理数比较、西安距离、求符合给定条件的整数集、求特殊方程的正整数解、掉入陷阱的数字、计算阶乘和、统计MOOC证书、查验身份证、计算职工工资、找出总分最高的学生、矩阵运算、找鞍点、计算平均成绩

2024-05-12 15:14:55 1224

原创 Python 学习笔记(十一)—— 异常处理

异常简介、捕获异常、异常的传递、抛出异常、自定义异常、定义清理异常

2024-04-21 23:44:30 1020

原创 C++语言题库(一)—— PAT

Hello World!、是不是太胖了、计算摄氏温度、求整数均值、逆序的三位数、输出闰年、比较大小、求整数的位数及各位数字之和、奇偶分家、交换最小值和最大值、查找整数、计算阶乘和、打印九九口诀表、求矩阵各行元素之和、最大公约数和最小公倍数

2024-04-17 18:56:49 830

原创 Python 学习笔记(十)—— 文件

文件基本概念、文件打开和关闭、文件操作、文件夹操作

2024-04-17 18:55:40 961

原创 Python 学习笔记(八)—— 数据库操作

数据库编程接口、常见的数据库函数及其参数说明、数据库操作、游标对象、创建数据表

2024-04-15 14:57:38 1582

原创 Python 学习笔记(九)—— 操作系统和环境

os模板、platform模块、扩展第三方库psutil、操作系统信息

2024-04-15 14:55:44 1428

原创 C++语言学习(四)—— 字符串处理函数

输入字符串函数 scanf_s函数和get_s函数、字符串长度计算函数 strlen、字符串复制函数 strcpy_s、字符串连接函数 strcat_s、字符串比较函数 strcmp、其他字符串处理函数

2024-04-07 23:44:07 3137

原创 机器视觉学习(十二)—— 绘制图形

cv2.line()绘制直线、cv2.rectangle()绘制矩形、cv2.circle()绘制圆形、cv2.ellipse()绘制椭圆、cv2.polylines()绘制多边形、cv2.putText()绘制文字

2024-04-07 23:43:24 841

原创 机器视觉学习(十一)—— 最小矩形和圆形区域、近似轮廓、凸包

最小矩形区域与最小圆形区域、显示近似轮廓、显示凸包

2024-03-31 23:25:33 2875

原创 机器视觉学习(八)—— 阈值化

图像阈值化、二值化及示例代码

2024-03-31 23:20:34 667

原创 机器视觉学习(十)—— 轮廓检测

轮廓的检测与绘制、显示边界框

2024-03-29 09:48:23 2359

基于口红评论的情感分析数据集

基于口红评论的情感分析数据集,适用于本人机器学习专栏的文章(机器学习课程设计报告 —— 基于口红数据集的情感分析)

2025-05-26

sonar.all-data copy.csv

基于声纳返回信息判断金属还是岩石的机器学习数据集,适用于本人机器学习专栏的文章(机器学习课程设计报告 —— 基于二分类的岩石与金属识别模型)

2025-05-26

机器学习课程设计报告 - 基于二分类的岩石与金属识别模型

本报告设计了一个基于声纳数据的二分类模型,用于区分金属与岩石。首先对208条60维声纳数据进行清洗和标准化处理,通过特征选择降低维度。评估了6种算法,发现KNN和SVM表现最优。经参数调优后,SVM模型(C=1.5,RBF核)在测试集上达到91%准确率。最后通过随机森林分析特征重要性,为资源勘探和水下探测提供了有效解决方案。

2025-05-24

基于机器学习的情感分析课程设计

内容概要:本文档为一份机器学习课程设计报告,主题是基于机器学习的情感分析。报告详细介绍了情感分析的全过程,从数据预处理、特征选择、模型训练与评估到最后的结论。数据预处理阶段包括去除重复评论、分词、去除停用词、生成词典和调用Word2Vec模型。特征选择部分强调了特征选择的重要性及其方法,包括过滤法、包装法和嵌入法。模型训练与评估阶段分别使用了K-近邻(KNN)和高斯朴素贝叶斯(GaussianNB)模型,通过调整K值和平滑参数alpha来优化模型性能。最终,通过对两个模型的精确率、召回率和F1分数的比较,得出了各自的优势和适用场景。 适合人群:具备一定机器学习基础的学生和研究人员,尤其是对情感分析感兴趣的读者。 使用场景及目标:①学习如何处理和预处理文本数据,包括去除重复信息、分词、去除停用词等;②理解特征选择的重要性及其具体方法;③掌握KNN和GaussianNB模型的训练和调优方法;④通过对比不同模型的性能,选择最适合的情感分析模型。 其他说明:报告提供了详细的代码示例和图表,帮助读者更好地理解每个步骤的实现过程。通过这次课程设计,读者不仅能掌握情感分析的理论知识,还能通过实践加深对机器学习模型的理解和应用能力。

2025-05-23

pima-data.csv

《印第安人糖尿病数据集》是机器学习领域常用的一个小型数据集。这个数据集主要用于教学和研究,它包含了一组关于印第安纳州Pima部落女性的健康指标,目的是预测患者是否患有糖尿病。

2025-04-12

3D斯卡蒂剑模型.c4d文件

3D斯卡蒂剑模型.c4d文件免费下载

2024-04-24

Yolov5的草莓识别数据集

Yolov5的草莓识别数据集免费下载

2024-04-24

Python知识点课件

Python知识点课件

2024-04-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除