自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(300)
  • 收藏
  • 关注

原创 把 AI 编程助手塞进「离线 U 盘」——零依赖的 LLM-Coder 随行编译器

为什么要把 Copilot 装进 U 盘?

2025-08-18 18:25:47 326

原创 把 AI 质检塞进「灯罩」——基于扩散缺陷生成器的零样本工业检测系统

《基于扩散模型的零样本缺陷检测系统在工业质检中的应用》介绍了一种创新的无监督缺陷检测方案。针对3C外壳产线质检难题,研究团队开发了DefectDiffusion-Lite模型,仅需100张OK图即可自动生成缺陷样本并完成检测。系统采用轻量级架构(17.6M参数),集成RTX4060边缘GPU,实现100ms内完成2k图像检测,漏检率<0.3%。创新性地将扩散模型同时用于缺陷生成与检测,解决了传统方法需要大量标注数据的问题。该方案已开源并落地12条产线,支持产品切换1分钟内完成校准,显著提升质检效率。

2025-08-18 17:24:54 886

原创 把 AI 变成「时间管理魔法师」——基于 LLM 的离线日程语义引擎 0.95 MB 塞进手环

《TinyLLM:让智能手环听懂自然语言的超低功耗方案》针对智能手环无法离线解析复杂日程的问题,提出基于RISC-V的端侧解决方案。通过研发仅0.95MB的微型语言模型(2层128维Transformer,int8量化),在64KB Flash/2KB RAM的CH32V003芯片上实现语义解析,将"明早不下雨跑步"等语句转为结构化日程。采用关键词蒸馏和BLE同步技术,在90mAh电池下保持14天续航,实测准确率达94-96%。项目已开源并量产,证明边缘设备也能实现高效自然语言理解。

2025-08-17 14:33:07 635

原创 把 AI 变成“气味翻译官”——基于微型电子鼻的低功耗 VOC 实时识别系统

微型电子鼻:基于TinyML的超低功耗气味识别方案 针对传统VOC检测设备体积大、成本高、云端AI依赖网络等问题,本文提出一种基于STM32L0 MCU的微型电子鼻方案。该方案采用4个MEMS气体传感器和量化CNN模型,在仅8kB RAM的资源限制下实现16种气味的离线识别(准确率92%)。硬件尺寸仅28×28×10mm,功耗优化后单次检测能耗仅0.28mAs,搭配CR2032电池可实现2年续航。实测在冷链、家居等场景下识别准确率超90%,已量产应用于物流监测(降低35%货损)。

2025-08-17 14:28:23 325

原创 让 AI 自己“画施工图”——基于扩散模型的智能 CAD 管线生成

AI驱动CAD管线设计革命:Layout2CAD实现30秒自动化出图 针对设计院70%时间耗费在管线绘制的问题,研究团队基于Stable Diffusion开发了Layout2CAD系统,实现建筑草图到DWG施工图的智能转换。该系统采用三阶段流程:语义分割建筑底图→扩散生成多通道Heatmap(含管径/标高信息)→矢量化输出DWG实体,结合129M参数的多模块模型(Diffusion UNet+GraphRefiner)及规范判别器,确保1mm精度并自动满足GB50015-2019标准。

2025-08-16 08:39:28 384

原创 把多模态大模型塞进「掌上单反」——基于 RT-DETR + CLIP 的离线「AI 取景器」实战

摘要:影像厂商推出轻量级“掌上单反”,通过边缘AI技术实现智能取景。采用RT-DETR-Lite(检测)、CLIP-ViT-Tiny(开放词汇识别)和SCRFD-500K(人脸增强)三模型级联方案,经结构化剪枝、INT8量化和骨干共享优化后,整体模型仅59MB,在RK3576 NPU上实现30FPS实时推理。系统可识别多种主体并给出拍摄建议,实测识别准确率89-97%,功耗仅1.6-1.9W。项目已开源模型部署方案并量产2万台,用户反馈取景成功率提升40%。

2025-08-16 08:36:05 301

原创 把 AI 装进“冰箱贴”——基于超低功耗语音合成的小屏电子价签

摘要: 本文介绍了一种超低功耗离线语音合成方案,将TTS技术集成到硬币大小的电子价签中,成本≤5元。采用nRF52805主控、FastSpeech2-Mini模型(压缩至1.2MB)和差分向量技术,实现单次播报能耗仅0.52μAh,CR2032电池续航达4.6年(每日100次播报)。方案支持多方言热切换,实测MOS分3.7-4.4,量产成本4.8元,已开源模型与硬件设计,首批10万片投产使超市扫码率提升22%。该技术为边缘AI在零售场景的轻量化落地提供了可行路径。

2025-08-15 17:16:02 372

原创 用 1 张 4090 复现 GPT-3.5?——单卡 24 GB 的「渐进式重计算」训练实践

《单卡24GB训练6B大模型实战:LoRA+ZeRO-Offload+Flash-Attn技术方案》摘要:在单张RTX4090(24GB)条件下,通过组合Flash-Attn v2(降低30%显存)、梯度检查点(节省50%)、ZeRO-Offload(转移60%优化器状态到CPU)三大技术,配合LoRA微调(仅训0.8%参数)和16步梯度累积,成功将6.7B模型压缩至21.8GB峰值显存占用。实验显示,12k训练步后验证PPL达7.3,推理速度50 tokens/s,完整代码已开源。

2025-08-15 17:13:18 405

原创 把大模型当“温度计”——基于 LLM 的分布式系统异常根因定位实战

AIOps助力根因定位:LLM+向量检索实现5分钟故障诊断 针对电商大促期间微服务故障定位效率低下的问题,本文提出融合LLM与向量检索的智能诊断方案。通过Filebeat+OTel采集日志指标,使用Sentence-Transformer转换为向量存入Qdrant数据库。当Prometheus触发告警时,系统自动执行三层处理:先通过HNSW算法快速检索相关日志,经层次聚类压缩为5条典型日志后,由微调后的Llama3-8B模型生成包含服务名、代码位置和原因的JSON输出。

2025-08-14 17:18:24 431

原创 把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅

本文介绍了一个在8位MCU(STM8L051F3)上实现的超低功耗关键词唤醒系统,该系统仅需0.5KB RAM和6KB Flash,平均功耗120μA,可实现6个月续航。采用1层GRU+1层全连接的极简模型结构,通过int8量化和CMSIS-NN优化,在89%准确率下满足"HelloBear"唤醒需求。文章详细阐述了硬件选型(1.5元BOM成本)、模型裁剪、功耗优化(99.4%时间处于1.5μA睡眠状态)等关键技术,并提供了完整开源方案。

2025-08-14 17:14:35 329

原创 把 AI 语音克隆做成「网页插件」——3 MB 的实时变声器是如何炼成的

摘要:本文介绍了一款基于Web技术的实时变声插件,通过WebAssembly和RVC(Retrieval-based Voice Conversion)模型实现浏览器端低延迟变声。该方案将声码器压缩至3MB,支持50种音色切换,延迟控制在80ms内,适用于直播、会议等场景。技术选型包括WebRTC音频采集、WASM加速特征提取、量化模型优化,并通过Opus编码实现高效传输。实测在MacBook Pro M2上延迟仅62ms,CPU占用18%。

2025-08-13 18:00:15 900

原创 把 AI 塞进智能井盖——基于 TinyML 的城市内涝预警边缘系统

城市“看海”模式如何提前刹车?

2025-08-13 17:53:06 764

原创 把 AI 押进“小黑屋”——基于 LLM 的隐私对话沙盒设计与落地

摘要:为解决医疗数据隐私问题,我们基于Intel SGX可信执行环境构建了LLM隐私沙盒系统,将70B大模型关进硬件级“黑盒”。通过Gramine框架实现内存加密(AES-GCM128)、动态换页管理和零信任日志(脱敏hash+密封通道),在256GB加密内存中运行INT4量化模型,性能损耗控制在可接受范围(延迟+27%,吞吐-22%)。系统满足“数据不出机房”、“运维不可见”等严苛要求,成本仅为GPU方案的6%。已开源核心组件,未来将拓展AMD SEV和GPU TEE支持。

2025-08-12 16:47:00 390

原创 基于深度学习的医学图像分析:使用BERT实现医学文本分类

摘要:本文介绍了基于BERT模型的医学文本分类方法,涵盖理论基础和代码实现。医学文本分类在疾病诊断、医学研究和信息检索中具有重要应用。BERT通过双向编码器架构和预训练任务(MLM和NSP)实现强大的语义理解能力。文章详细展示了从数据加载、模型构建到训练评估的全流程,使用PyTorch和transformers库实现了一个分类准确率较高的BERT模型。该方法可有效提升医学文本处理效率,为后续研究提供了可扩展的框架。

2025-08-12 16:30:42 433

原创 “零样本”也能玩分割——基于 SAM-Zero 的工业缺陷检测落地手记

《SAM-Zero:零样本工业缺陷检测的落地实践》针对PCB缺陷检测中的高标注成本问题,提出基于SAM模型的零样本分割方案。通过Mobile-SAM轻量化(参数10M)、RT-DETR-Lite提示生成(延迟12ms)和INT8量化(模型大小10MB)三重优化,在Jetson Orin Nano实现实时推理(显存占用2.1GB)。方案支持点/框/文本三种零样本提示模式,对38类缺陷Top-1命中率达92%。工厂实测显示,新增缺陷类别时无需标注即可达到0.81 IoU,较传统方法节省1250元/类的标注成本。

2025-08-11 21:43:41 331

原创 用 100 行 Python 把 LLM 变成“数据分析师”——零 SQL 的 NL2Chart 实战

摘要:本文介绍了如何利用大模型技术实现"自然语言直接生成图表"的功能。通过整合LangChain、PandasAI和DuckDB等技术,构建了一个100行代码以内的解决方案,业务人员只需输入自然语言描述(如"最近30天GMV趋势"),系统即可在1秒左右自动生成相应可视化图表。该系统采用本地parquet文件存储数据,不暴露数据库,通过Prompt工程约束LLM输出规范的DuckDB SQL和Altair图表代码。

2025-08-11 21:40:33 1758

原创 把大模型当“积木”——基于可微搜索的 LLM 模块自动拼接框架

摘要:模块化LLM通过可微结构搜索实现模型按需组装,将Transformer拆分为可动态组合的积木块。系统采用三层路由架构(Router-Lite+模块选择+Aggregator),通过梯度优化同时考虑任务精度、延迟和显存。实验表明,8.7B拼装模型在客服场景中相对70B全模型,仅损失0.3%准确率但节省96%显存和58%延迟,15分钟即可训练完成。关键技术包括Gumbel-Softmx离散化、熵正则防稀疏、通用指令防遗忘等。开源工具已支持LLaMA等系列模型,未来将扩展MoE和端云协同能力。

2025-08-10 15:28:13 360 2

原创 把“AI 老师”请进耳机——基于 Whisper-Tiny 的离线英语听说陪练系统

摘要: 本文介绍了一种基于Whisper-Tiny和FastSpeech2-Mini的离线AI英语口语陪练系统,部署在RK3588芯片(6TOPS NPU)的耳机设备上。通过知识蒸馏、INT8量化和流式解码技术,将语音识别(Whisper-Tiny)、语法纠错(Mini-BERT)和语音合成(FastSpeech2-Mini)三模块压缩至总参数量66M、内存占用215MB,端到端延迟<300ms,功耗<450mW,支持8小时续航。

2025-08-10 15:23:40 239

原创 让 AI 看懂你的“随手拍”——基于 CLIP 的零样本商品识别系统落地实战

《基于CLIP蒸馏的零样本商品识别方案》摘要:针对社交电商场景中商品SKU快速更新、数据隐私和实时性需求,提出一种轻量化CLIP解决方案。通过MobileViT-S替换原版ViT-B/16(参数量从86M降至5.1M),结合商品标题作为自然语言标签,实现无需标注的零样本学习。采用FAISS-IVF1024/PQ16索引将5万商品向量压缩至28MB,在Android端实现163ms延迟、94.5%准确率的离线识别。

2025-08-09 21:26:15 244

原创 把大模型“关进冰箱”——基于知识蒸馏 + 动态量化的小型化实战笔记

摘要: 针对RTX3060(12GB)部署70B大模型的挑战,提出三步优化方案:1)通过知识蒸馏训练7B小模型,保留70B模型的翻译能力;2)采用动态量化将7B模型压缩至INT4,显存占用降至4.1GB;3)结合投机解码技术,利用7B模型生成草稿、70B模型校验,实现延迟降低52%(0.9s/64token)。实验显示,该方法在BLEU指标仅下降0.5的情况下,显存需求从140GB压缩至11.2GB,并通过Docker实现端侧一键部署。关键技术包括温度调节(T=0.6)提升接受率至78%,以及向量化加速IN

2025-08-09 21:22:42 409

原创 把深度学习搬进浏览器:一行 JavaScript 就能跑的“零后端”目标检测实战

摘要:本文介绍了一种基于TensorFlow.js和WebGPU的浏览器端目标检测方案,通过YOLO-Nano轻量模型实现零后端、低延迟的AI推理。针对隐私保护、网络抖动和云端成本问题,该方案将1.7MB的量化模型部署为PWA,支持离线使用,在移动端实现24ms/帧的推理速度。关键技术包括模型蒸馏、WebGPU加速、ServiceWorker缓存及隐私保护设计(数据不出浏览器)。实测显示,千元机亦可流畅运行,并提供了开源实现与动态兼容性处理方案,展现了前端"端智能"的潜力。

2025-08-08 12:01:15 379

原创 一张 A100 变身八台“小显卡”——我用 vLLM + CUDA MPS 打造 LLM 多租户推理工厂

摘要: 本文介绍了一种基于CUDAMPS和vLLM的多租户LLM推理优化方案,通过显存软隔离技术将单张A100 GPU虚拟化为8个独立分区,实现多LoRA模型并行运行。该架构采用K8s容器化部署,结合进程级隔离和cgroup限制,确保故障不扩散,同时支持动态扩缩与LoRA热插拔。实测显示8租户并发下总QPS达144req/s,P99延迟268ms,GPU利用率97%。方案解决了传统MIG灵活性不足的问题,并针对OOM连锁反应、CUDA Context爆炸等痛点提出优化策略,最终实现GPU资源的云原生化管理。

2025-08-08 11:54:45 407

原创 把“思考”塞进 1 KB:我用纯 C 语言给单片机手搓了一个微型 Transformer 推理引擎

摘要:本文探讨了在64KB SRAM的MCU(如STM32H743)上部署精简Transformer模型的技术方案。通过将6层Transformer压缩至1层(隐藏维度128)、4-bit KV-Cache量化等优化手段,实现了240KB Flash占用和59KB RAM峰值,推理延迟184ms(400MHz Cortex-M7),准确率96.1%。关键创新包括:手工优化矩阵乘(CMSIS-NN)、查表法Softmax/LayerNorm、权重按Tile重排提升Cache命中率(60%→94%)。

2025-08-07 15:47:05 2433 2

原创 从玩具到生产力:我用 20 行代码把 LLaMA 3 塞进 Excel,让 AI 在单元格里“活”起来

摘要:LLaMA-Cell是一款开源Excel插件,支持在单元格内直接调用本地LLaMA3-8B量化模型处理数据,实现AI函数式调用(如=LLAAM("摘要",A1:D10))。对比GPT-4,本地部署的LLaMA3-8B-Q4_K_M在成本(免费)、延迟(150ms)和隐私(数据不外传)上更具优势。技术方案通过PyXLL+FastAPI+llama-cpp-python实现,仅需20行核心代码。典型场景包括客户分级、发票纠错和简历匹配,通过KV缓存和批量推理优化性能。

2025-08-07 15:43:10 361

原创 基于深度学习的医学图像分析:使用DenseNet实现医学图像分类

本文介绍了基于DenseNet的医学图像分类方法。首先阐述了医学图像分析的重要性及其在疾病诊断等场景的应用。重点解析了DenseNet的核心技术——密集连接机制,该机制能增强特征传递、减少梯度消失并提高特征复用率。文章详细展示了使用PyTorch实现DenseNet模型的完整流程,包括数据预处理、模型加载与微调、训练评估等步骤,并在胸部X光数据集上进行了实验验证。实验结果表明DenseNet能有效提升医学图像分类性能,为辅助医疗诊断提供了可靠的技术方案。

2025-08-06 13:38:16 508

原创 基于深度学习的医学图像分析:使用Diffusion Models实现医学图像生成

摘要: 本文介绍了基于Diffusion Models的医学图像生成技术。医学图像生成在疾病模拟、图像增强和数据增强等场景中具有重要应用。Diffusion Models通过正向扩散(逐步添加噪声)和逆向扩散(逐步去噪生成图像)实现高质量图像生成。文章详细阐述了其理论基础,并提供了完整的PyTorch实现代码,包括数据加载、模型构建、训练及可视化生成结果。实验表明,Diffusion Models能有效生成医学图像,为医学研究和临床诊断提供技术支持。读者可通过调整模型结构或数据集进一步优化生成效果。

2025-08-06 13:36:33 930

原创 基于深度学习的医学图像分析:使用Autoencoder实现医学图像去噪

本文介绍了基于Autoencoder的医学图像去噪技术。医学图像去噪是提高诊断准确率的重要预处理步骤。文章首先阐述了医学图像分析的基本概念和应用场景,然后详细讲解了Autoencoder的编码器-解码器结构及其去噪原理,突出其无监督学习的优势。通过PyTorch实现的代码示例,展示了从数据加载、模型构建、训练到评估的全过程,并提供了可视化对比去噪效果的方法。该技术能有效去除医学图像噪声,提高图像质量,为医学诊断和研究提供支持。文章为读者提供了完整的实现方案,并建议进一步优化模型以提升性能。

2025-08-05 15:08:08 695

原创 基于深度学习的医学图像分析:使用CycleGAN实现医学图像风格转换

本文介绍了基于CycleGAN的医学图像风格转换技术。首先阐述了医学图像分析的定义及其在疾病诊断、病理研究等场景的应用价值。重点解析了CycleGAN的架构原理,包括其双生成器-判别器结构和循环一致性损失机制,强调了该技术在无需配对数据情况下的优势。文章提供了完整的PyTorch实现方案,涵盖数据预处理、模型构建、训练过程和评估方法,并展示了图像转换效果。实验结果表明CycleGAN能有效实现MRI与CT等医学图像的高质量转换,为医学影像分析提供了新的技术手段。

2025-08-05 15:06:28 912

原创 基于深度学习的医学图像分析:使用PixelCNN实现医学图像生成

本文介绍了基于PixelCNN的医学图像生成技术,探讨了其理论基础和实现方法。文章首先阐述了医学图像分析的定义及其在疾病模拟、图像增强和数据增强中的应用场景。随后详细讲解了PixelCNN的架构原理,包括掩码卷积机制及其在像素级图像生成中的优势。在代码实现部分,提供了从数据预处理、模型构建到训练评估的完整流程,使用PyTorch实现了包含MaskedConv2d层的PixelCNN网络,并在ChestX-ray8数据集上进行训练和可视化展示。该技术能够生成高质量医学图像,为临床研究和诊断提供支持。

2025-08-04 13:33:03 772

原创 基于深度学习的医学图像分析:使用PatchGAN实现医学图像分割

本文介绍了基于PatchGAN的医学图像分割技术。医学图像分割在疾病诊断、手术规划等方面具有重要意义。PatchGAN作为生成对抗网络的扩展,通过局部判别器提升了分割性能。文章从理论基础入手,详细讲解了PatchGAN架构及其优势,包括高质量分割、高效计算等特点。在代码实现部分,提供了PyTorch环境配置、数据集加载、模型构建和训练评估的完整流程。通过公开医学图像数据集的实验验证,展示了PatchGAN在医学图像分割中的实际应用效果。该技术为医学影像分析提供了新的解决方案,具有重要的临床价值和研究意义。

2025-08-04 13:31:02 2265

原创 基于深度学习的医学图像分析:使用变分自编码器(VAE)实现医学图像生成

本文介绍了基于变分自编码器(VAE)的医学图像生成技术。首先概述了医学图像分析的定义及其在疾病模拟、图像增强和数据增强中的应用场景。然后详细讲解了VAE的理论基础,包括其编码器-解码器架构和生成多样性优势。文章提供了完整的代码实现流程:从环境准备、数据加载预处理,到VAE模型定义、训练和评估方法,最后展示了生成图像的可视化效果。该技术能够生成多样化的医学图像,支持医学研究和临床应用。读者可通过调整模型结构和参数进一步优化生成效果。

2025-08-03 14:17:12 1365

原创 基于深度学习的医学图像分析:使用PixelRNN实现医学图像超分辨率

本文介绍了基于PixelRNN的医学图像超分辨率技术。医学图像超分辨率能提升图像质量,辅助疾病诊断和研究。PixelRNN通过递归神经网络建模像素间依赖关系,生成高质量图像。文章详细阐述了从环境准备、数据集加载到模型构建、训练评估的完整实现流程,包括PyTorch代码示例。实验表明,该方法能有效提升医学图像分辨率,为诊断提供更清晰图像。最后建议读者可尝试其他数据集或改进模型架构以进一步优化性能。

2025-08-03 14:14:16 324

原创 基于深度学习的医学图像分析:使用GAN实现医学图像增强

本文介绍了基于生成对抗网络(GAN)的医学图像增强技术。首先阐述了医学图像分析的定义及其在疾病诊断、医学研究和图像预处理中的应用场景。随后详细解析了GAN的架构原理,包括生成器和判别器的对抗训练机制及其在图像质量提升方面的优势。文章提供了完整的代码实现流程,涵盖环境准备、数据集加载、GAN模型定义、训练过程和评估方法。通过公开医学影像数据集的应用示例,展示了如何使用PyTorch框架构建和训练GAN模型来增强医学图像质量。该技术有助于提高医学诊断的准确性,为后续图像分析任务提供更优质的输入数据。

2025-08-02 16:33:21 345

原创 基于深度学习的医学图像分析:使用MobileNet实现医学图像分类

本文介绍了基于MobileNet的医学图像分类技术。首先概述了医学图像分析的重要性及其在疾病诊断等场景的应用。然后重点讲解了MobileNet的轻量化架构优势,包括深度可分离卷积的原理及其计算效率高的特点。文章提供了完整的代码实现流程,涵盖数据预处理、模型加载与微调、训练评估等关键步骤。实验结果表明,MobileNet在保持较高分类精度的同时显著降低了计算资源需求。该研究为医学图像分析提供了一种高效的深度学习解决方案,并建议读者可尝试改进模型以提升性能。

2025-08-02 16:31:34 904

原创 基于深度学习的医学图像分析:使用Autoencoder实现医学图像去噪

本文介绍了基于Autoencoder的医学图像去噪方法。首先阐述了医学图像分析的重要性及去噪在疾病诊断、医学研究和图像增强中的应用。然后解释了Autoencoder的理论基础,包括其编码器-解码器结构和无监督学习优势。接着详细展示了代码实现过程:从环境准备、数据集加载到模型构建、训练和评估。其中使用PyTorch搭建了一个包含卷积层和反卷积层的Autoencoder模型,在ChestX-ray8数据集上进行训练,并可视化展示了去噪效果。结果表明,Autoencoder能有效去除医学图像噪声。

2025-08-01 14:40:35 954

原创 基于深度学习的医学图像分析:使用CycleGAN实现医学图像到图像的转换

本文介绍了使用CycleGAN实现医学图像转换的方法。首先概述了医学图像分析的重要性及图像转换在诊断和研究中的应用。然后详细讲解了CycleGAN的原理,包括其双生成器-判别器架构和循环一致性损失机制的优势。文章提供了完整的代码实现流程:从环境配置、数据集加载,到生成器和判别器模型的定义,再到训练过程和评估方法。实验结果表明,CycleGAN能有效实现MRI与CT图像等医学影像的高质量转换,且无需配对训练数据。该方法为医学图像分析提供了新的技术手段,具有重要的临床应用价值。

2025-08-01 14:38:17 518

原创 基于深度学习的医学图像分析:使用YOLOv5实现医学图像目标检测

本文介绍了基于YOLOv5的医学图像目标检测技术。首先阐述了医学图像分析的重要性及其在疾病诊断、手术规划等场景的应用。然后详细讲解了YOLOv5算法的理论基础,包括其高效的架构特点和优势。接着提供了完整的代码实现流程,从环境准备、数据加载到模型训练与评估。实验表明,YOLOv5能够有效提升医学图像目标检测的性能和效率。文章最后鼓励读者尝试改进模型架构或使用其他数据集,以进一步优化检测效果,为医学诊断提供更精准的技术支持。

2025-07-31 13:40:29 664 1

原创 基于深度学习的医学图像分析:使用BERT实现医学文本分类

本文介绍了基于BERT的医学文本分类技术,从基本概念到代码实现全面解析。医学文本分类在疾病诊断、医学研究和信息检索中具有重要应用价值。BERT作为一种预训练语言模型,通过双向编码器和微调机制,能有效捕捉文本语义。文章详细展示了使用PyTorch和Transformers库实现BERT分类模型的完整流程,包括数据集加载、模型定义、训练和评估步骤。实验结果表明,BERT在医学文本分类任务中表现优异。该技术为医疗信息化提供了高效解决方案,读者可通过调整数据集或模型架构进一步优化性能。

2025-07-31 13:38:43 1014

原创 基于深度学习的医学图像分析:使用DeepLabv3+实现医学图像分割

本文介绍了基于DeepLabv3+的医学图像分割技术。医学图像分割在疾病诊断、手术规划等方面具有重要意义。DeepLabv3+通过空间金字塔池化(ASPP)和空洞卷积实现多尺度特征提取,显著提升分割性能。文章详细讲解了DeepLabv3+架构原理,并提供了完整的PyTorch实现流程,包括数据预处理、模型构建、训练与评估。实验结果表明该方法能有效完成医学图像分割任务,可作为医学图像分析的实用解决方案。

2025-07-30 13:55:35 572

原创 深度学习中的注意力机制:原理、应用与未来展望

本文深入探讨了深度学习中的注意力机制。首先分析了注意力机制的原理,包括其模仿人类选择性关注的动机、加权求和的基本形式以及自注意力机制的特点。其次介绍了注意力机制在自然语言处理(机器翻译、文本分类、问答系统)、计算机视觉(图像分类、目标检测、图像分割)和语音识别等领域的广泛应用。最后展望了注意力机制在多模态学习、强化学习结合、可解释性提升及硬件加速等方向的发展前景。文章指出,注意力机制通过聚焦关键信息显著提升了模型性能,未来将在人工智能领域发挥更重要作用。

2025-07-30 13:52:56 977

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除