山东大学软件学院项目实训——面向中小学生的智能题目生成系统开发(一)

项目概述:

 本项目是一个面向学生用户的智能化学习辅助系统,该系统整合了多项AI技术,旨在为学生提供全方位的学习支持。系统基于Deepseek的自然语言处理(NLP)和光学字符识别(OCR)技术,构建了四个核心功能模块,覆盖了从学习材料整理到个性化反馈的学习全流程。

项目背景:

后疫情时代混合学习常态化:全球73%的教育机构已采用混合教学模式,学生对自主学习和数字化工具的需求激增300%(2024年OECD数据)

AI教育应用爆发期:教育AI市场规模达589亿美元,年增长率28.7%,其中学习辅助类产品占比达42%

个性化学习成为刚需:92%的Z世代学生认为"一刀切"的教学方式效率低下

传统学习模式的困境:

效率瓶颈:学生平均每周花费6.2小时在机械性学习准备(笔记整理、题目抄录等)。

反馈滞后:传统作业批改周期长达3-5天,错题利用率不足30%。

个性化缺失:85%的练习题与个体学习进度不匹配。

数字鸿沟:优质教育资源的地域差异导致学习效果标准差达41%。

目标用户:

中小学生

核心功能:

拍照转PDF模块

1..采用先进的OCR技术,支持多角度、多光源环境下的文档拍摄
2.自动边缘检测与透视校正,确保文档平整度
3.智能背景去除与对比度优化,提升扫描质量
4.支持批量拍摄自动合并为单一PDF文件
5.将纸质笔记、教材内容快速数字化
6.解决学生资料整理耗时的问题
7.PDF解析与题目生成模块

深度语义理解算法分析PDF内容结构
1.基于知识图谱的关键概念提取技术
2.自适应题目生成引擎(选择题/填空题/简答题)
3.难度分级系统(基础/进阶/挑战三级)
4.从教材章节自动生成配套练习题
5.根据课堂笔记提炼重点问题
6.支持用户自定义生成题目数量与类型
7.可针对特定知识点进行定向题目生成
8.自动判卷与错题分析模块

多模态答案匹配算法(支持文字、公式、图表)
1.错题归因分析模型(知识漏洞/理解偏差/粗心错误)
2.解题步骤分解与评分系统
3.相似题目推荐引擎
4.即时反馈与详细解析
5.可视化错题统计与分析
6.错误模式识别与归类
7.支持手写答案的智能识别与评判
8.个性化学习报告模块

知识点掌握度雷达图
1.学习进度时间轴
2.错题趋势分析
3.学习效率评估
4.周/月学习总结报告
5.薄弱环节专项提升建议
6.个性化学习路径规划


用户使用流程示例:

资料数字化:拍摄课堂笔记→生成PDF

知识巩固:上传教材PDF→生成练习题

自我检测:完成练习→自动批改

提升学习:查看错题分析→接收个性化建议

长期规划:定期学习报告→调整学习策略

本人负责内容:后端。系统架构与设计:设计系统的后端架构,选择合适的服务器,数据库和编程语言。确保系统具有高可用性,高并发处理能力和可拓展性。

数据存储与管理:设计数据库结构,存储题目,用户信息,错题记录等数据。实现数据的增删改查等操作,确保数据的准确性和完整性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值