穷举法、倍数递增法、辗转相除法求最大公约数与最小公倍数(超详细:方法、思路、实例、代码全解析)

求最小公倍数

方法一:暴力穷举

思路:通过暴力穷举i来分别对a和b相除,直到发现第一个可以同时除尽的数,就是它们的最小公倍数。

缺点:慢

//最小公倍数
// 方法一(穷举法)
#include<stdio.h>
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	int i = (a > b ? a : b);
	while (1)
	{
		if ((i % a == 0) && (i % b == 0))
		{
			break;
		}
		else
		{
			i++;
		}
	}
	printf("%d", i);
	return 0;
}

求最小公倍数

方法二:倍数递增法求最小公倍数

思路:首先明确一点,最小公倍数一定是a和b的倍数,那么我们锁定a或b中的一个,这边以a举例,a的n倍如果能够整除b,那么这个数一定是a和b的公倍数,我们从1倍开始乘起,找到最先可以整除b的数,(a*最先可以整除的数)就是a和b的最小公倍数。

优点:较第一种更快速。

#include<stdio.h>
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	int i = 1;
	while (1)
	{
		if ((a * i) % b == 0)
		{
			break;
		}
		else
		{
			i++;
		}
	}
	printf("%d", i*a);
	return 0;
}

求最大公约数和最小公倍数 

方法:辗转相除法

思路:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是 0 为止。

此时的被除数就是最大公约数。

两原来的数相乘再除以最大公约数就是他们的最小公倍数。

#include<stdio.h>
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	int tmp1 = a;
	int tmp2 = b;
	int c = 0;
	while (a % b)
	{
		c = a % b;
		a = b;
		b = c;
	}
	printf("最大公约数:%d", a);
	printf("\n最小公倍数:%d", tmp1 * tmp2 / a);


	return 0;
}

其实a或者b谁大谁小都无所谓,因为经过第一轮循环,大的就会跑到前面,小的就会跑到后面。

举例:a=3;b=5

--------------------

c=3%5=3

a=5

b=3(大的跑到了前面,小的跑到了后面)

---------------------

c=5%3=2 (若a=5,b=3举例,则直接执行这个过程)

a=3 

b=2 

----------------------

c=3%2=1 

a=2

b=1

----------------------

c=2%1=0

a=2

b=0(最终都是这个结果)

--------------------

结束循环

此时原来的被除数a就是最大公约数

tmp1*tmp2/a就是最小公倍数。

总结:如果说刚开始。a 小于 b,那么经过第一轮之后,它们两个就会交换位置,然后 a 就会变成了一个大的数,b 就会变成了一个小的数。然后再进行循环。这样的话,无论怎么样,被取余的那个数(a)一定都是最后的最大公约数。取余的那个数最(b)后都会变为0。然后a*b/最大公约数就是我们要求的最小公倍数。

希望通过这篇博客,能让大家对穷举法、倍数递增法以及辗转相除法求最大公约数和最小公倍数有更清晰、深入的理解。编程的世界丰富多彩,每一种算法都像是一把独特的钥匙,能开启解决不同问题的大门。愿我们都能在这片知识的海洋里,不断探索,收获更多宝贵的知识财富。

如果大家在学习过程中有任何疑问,或者有更好的思路和方法,欢迎在评论区留言交流,让我们一起在编程的道路上携手前行,共同进步~

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值