1.根据区间修剪二叉树
2.有序数组转化二叉搜索树
3.二叉搜索树转化累加树
1.根据区间修剪二叉树
题目解释:此题是根据区间修剪二叉树,如果超出区间的节点就要将其删除
做法原理:此题与删除节点的题做法类似,如果要删除节点,则把节点的孩子返回给上一个节点就可以了,此题二叉搜索树,如果当前节点的值小于区间最小值,那么就返回他的右孩子,因为右孩子要比当前节点更大,左节点的做法类似。
class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
if(root == null) return null;
if(root.val < low) return trimBST(root.right ,low, high);
if(root.val > high) return trimBST(root.left ,low, high);
root.left = trimBST(root.left , low , high);
root.right = trimBST(root.right , low , high);
return root;
}
}
2.有序数组转化二叉搜索树
原理:此题的关键就在于选择怎样的区间,我这里选取的是左闭右闭的区间,所以做判断的时候左右区间是可以相等的,相等的时候就是答案的赋值。
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
TreeNode root = dfs(nums , 0 , nums.length-1);
return root;
}
//左闭右闭
public TreeNode dfs(int[] nums , int left , int right){
if(left > right) return null;
int mid = (left + right) >> 1;
TreeNode root = new TreeNode(nums[mid]);
root.left = dfs(nums,left,mid-1);
root.right = dfs(nums,mid+1,right);
return root;
}
}
3.二叉搜索树转化累加树
题意:比当前节点值大的所有孩子节点累加就是当前节点的值
原理:此题用双指针记录当前的累加值,从大到小赋值就好了,较简单。
class Solution {
int sum = 0;
public TreeNode convertBST(TreeNode root) {
dfs(root);
return root;
}
public void dfs(TreeNode root){
if(root == null) return;
dfs(root.right);
sum += root.val;
root.val = sum;
dfs(root.left);
}
}