CPP007披萨

描述

某人有好多披萨,他想知道所有披萨的面积之和

每个披萨可以看作半径为 r, 圆心角为 α 度的扇形,请你求出所有披萨的面积之和

输入

输入第一行为一个整数 n(1≤n≤100) 表示披萨个数

接下来的 n 行,每行两个整数 r, α (1≤r≤100,1≤α≤360) ,代表每个披萨的半径和圆心角(单位为度)

输出

输出一行,代表所有披萨的面积和(以四舍五入的方式保留三位小数

输入样例 1

2

1 360

2 180

输出样例 1

9.425

提示

本题对答案精度要求较高,请注意变量类型计算方式对答案精度的影响

请尽量提高圆周率的精度!

圆周率的精确位数也会对答案造成影响(例如仅保留6位数下,经过乘法以及多次累加的扩大,误差足以进入三位小数),可以尝试用数学函数计算圆周率

主要的噱头就是用数学函数计算圆周率,其实如果想偷懒的话,直接定义一个3.1415926535,提交还是可以过的。我们使用莱布尼茨级数公式,可以得到以下公式来计算圆周率:Pi = 4*(1-1/3+1/5-1/7+……)

#include <iostream>
using namespace std;
void PI(double Pi)
{
    double Pi = 0;
    double i = 1;
    double r = 1;
    for(int ix = 1; ix < 999999999; ix++)
    {
        if(ix%2 !=0) i = 1;
        else i = -1;
        Pi += i*1/r;
        r += 2;
    }
    Pi *= 4;
    printf("%.15lf",Pi);
}

由于int类型,精度不是很好。

#include <iostream>
#include <iomanip>

using namespace std;
#define Pi 3.1415926535

int main()
{
    int n, r, a, i;
    double S = 0;
    cin >> n;
    for(i = 0; i < n; i++)
    {
        cin >> r >> a;
        S += (double)a/360 * Pi *r *r;
    }
    cout << fixed << setprecision(3) << S << endl; //该函数可以使浮点数保留n位数字
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值