LeetCode 15.三数之和
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0
且不重复的三元组。
**注意:**答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
代码:
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
# 获取数组长度
n = len(nums)
# 初始化结果列表
res = []
# 如果数组为空或者长度小于3,直接返回空列表
if not nums or n < 3:
return []
# 对数组进行排序
nums.sort()
# 遍历数组
for i in range(n):
# 如果当前元素大于0,说明后面的元素都大于0,不可能组成和为0的三元组,直接返回结果
if nums[i] > 0:
return res
# 跳过重复的元素,避免重复计算
if i > 0 and nums[i] == nums[i-1]:
continue
# 初始化左右指针
L = i + 1
R = n - 1
# 使用双指针法遍历数组
while L < R:
# 如果三个数的和为0,将这三个数作为一个三元组添加到结果列表中
if nums[i] + nums[L] + nums[R] == 0:
res.append([nums[i], nums[L], nums[R]])
# 跳过重复的元素
while L < R and nums[L] == nums[L+1]:
L = L + 1
while L < R and nums[R] == nums[R-1]:
R = R - 1
# 移动指针
L = L + 1
R = R - 1
# 如果三个数的和大于0,说明需要减小和,所以移动右指针
elif nums[i] + nums[L] + nums[R] > 0:
R = R - 1
# 如果三个数的和小于0,说明需要增大和,所以移动左指针
else:
L = L + 1
# 返回结果列表
return res