C、小红的小小红
思路:考虑使用string相关的函数,erase(x,y)是指删除第x字符后面的y个字符,不要记错。还有,想清楚是要在全部查找后删除还是分开查找删除。如下面两段代码。
int x=s.find("xiao");
int y=s.find("hong");
s.erase(x,4);
s.erase(y,4);
int x=s.find("xiao");
s.erase(x,4);
int y=s.find("hong");
s.erase(y,4);
当删除“xiao”后字符串的位置可能会发生改变,所以应该分开查找删除。
#include<bits/stdc++.h>
#include<vector>
using namespace std;
const int N=100010;
string s;
int main(){
cin>>s;
int x=s.find("xiao");
s.erase(x,4);
int y=s.find("hong");
s.erase(y,4);
printf("xiaohong");
cout<<s;
return 0;
}
D、小红的中位数
分析:求中位数分成偶数个数数组和奇数个数数组这里需要分类讨论一下。
偶数个数数组:以 123456 为例。
当删去1时,中位数为4;删去2时,中位数为4;删去3时,中位数为4;删去4时,中位数为3;删去5时,中位数为3;删去6时,中位数为3。不难发现,当删除数组元素位置小于原来数组中位数时,中位数为原数组中位数;当删除大于等于原数组中位数的位置元素时,中位数为原数组中位数位置-1的元素。
奇数个数数组:以1234567为例
当删除1时,中位数为4和5组成的;2,3同理;当删除4时,中位数为3和5组成的;当删除5时,中位数为3和4组成的;6,7同理。
思路(讲解版):先通过sort函数对数组进行排序,再进行分类讨论。由于精度问题,可以用map存储中位数乘以2,最后手动输出。
void shuchu(int x){
if(x%2==0){
cout<<x/2<<".0";
}
else{
cout<<x/2<<".5";
}
cout<<"\n";
}
输出时注意f(i)中,i所代表的元素是指排序前数组的元素,需要另开一个数组存储原数组。
#include<bits/stdc++.h>
using namespace std;
map<int ,int>m;//存储中位数*2
const int N=100010;
int a[N],b[N];
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++) {
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(a,a+n);
if(n%2==0){
for(int i=0;i<n/2;i++)
{
m[a[i]]=a[n/2]*2;
}
for(int i=n/2;i<n;i++)
{
m[a[i]]=a[n/2-1]*2;
}
}
else
{
for(int i=0;i<n/2;i++)//前半部分
{
m[a[i]]=a[n/2]+a[n/2+1];
}
m[a[n/2]]=a[n/2-1]+a[n/2+1];
for(int i=n/2+1;i<n;i++)//后半部分
{
m[a[i]]=a[n/2-1]+a[n/2];
}
}
for(int i=0;i<n;i++){
double y=1.0*m[b[i]]/2;
printf("%.1lf\n",y);
}
return 0;
}
E、小红构造数组
分解质因数:两种写法
O(sqrt(n)) 分解n
cin>>n;
for(int i=2;i*i<=n;i++{
while(n%i==0){
m[i]++;
n/=i;
}
}
if(n>1) m[n]++;
O(nlogn) 分解1到n所有数
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j+=i){
}
}
思路:先分解因式,把所有素因子放到数组中,对数组进行操作。或者使用map记录每个素因子出现次数。对素因子进行排序直到符合条件。在排序时,由题意,可以在两个相同的数间插入一个不相同的。但当可插入的位置大于插入的数时,一定有两个相等的数相邻。因此需要统计出现次数。
找到出现次数最大值和次大值,只要最大值和次大值不等,用一个最大值,再用一个其他的,直到最大与次大相等,直接输出
#include<bits/stdc++.h>
using namespace std;
#define int long long
signed main(){
int n;
map<int,int>m;
cin>>n;
if(n==1) {
printf("-1");
return 0;
}
for(int i=2;i*i<=n;i++)//分解因式
{
while(n%i==0){
m[i]++;
n/=i;
}
}
if(n>1)m[n]++;
set<pair<int,int>>s;//存储每个素因数出现的次数
int sum=0,h=0;//h表示出现次数最大值,sum表示因子个数
for(auto i:m) {
sum+=i.second;
h=max(h,i.second);
s.insert({i.second,i.first});
}
if(h-1>sum-h) {
printf("-1");
return 0;
}
cout<<sum<<endl;
if(s.size()==1){
cout<<(*(s.begin())).second<<endl;
return 0;
}
int x;
while(sum>0){
auto temp=*s.rbegin();//最大
s.erase(temp);
auto temp2=*s.rbegin();//次大
s.erase(temp2);
if(temp.first!=temp2.first)//不等,输出最大,其他数这里选择的是次大
{
cout<<temp.second<<" ";
temp.first--;
x=temp.second;
if(temp.first){//看最大等于0的情况
cout<<temp2.second<<" ";
x=temp2.second;
temp2.first--;
}
else break;
s.insert(temp);
s.insert(temp2);
}
else{
s.insert(temp);
s.insert(temp2);
break;
}
sum--;
}
//交替输出
vector<pair<int,int>>v;
for(auto i:s) {
v.push_back(i);
}
while(1){
int jud=0;
//if(v.back().second==x){
// swap(v.back(),v[v.size()-2]);
//}
for(int i=v.size()-1;i>=0;i--)
{
if(v[i].first){
cout<<v[i].second<<" ";
v[i].first--;
jud=1;
}
}
if(!jud) break;
}
return 0;
}