代码随想录:105、有向图的完全可达性

105. 有向图的完全可达性

这道题属于简单搜索题,采用bfs即可,也可用dfs但注意要回溯

1、条件准备

graph数组存图,visit数组判断结点是否走过。
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l; i <= r; i++)
using namespace std;
#define endl '\n'

bool graph[105][105];
bool visit[105];
 int n,k;

2、主函数

先存图,建边。然后bfs
再遍历一下结点是否都走过,有没走过输出-1,否则输出1
int main()
{
  std::ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
 
  cin>>n>>k;
  rep(i,1,k)
   {
    int a,b;cin>>a>>b;
    graph[a][b]=1;
   }
  bfs(); 
  rep(i,1,n)
  {
    if(!visit[i])
    {
      cout<<"-1";
      return 0;
    }
  }
  cout<<"1";
  
  return 0;
}

3、bfs函数

还是用数组模拟队列,把1放进去。
取队头,遍历该点有无边,并且还没走过,有就加入队列。
void bfs()
{
  int q[105];int tt=-1,hh=0;
  q[++tt]=1;
  visit[1]=1;
  while(hh<=tt)
  {
    int cur=q[hh++];
    rep(i,1,n)
    {
      if(graph[cur][i]&&!visit[i])
      {
        q[++tt]=i;
        visit[i]=1;
      }
    }
  }
}

4、总结

简单搜索题
完整代码如下:
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l; i <= r; i++)
using namespace std;
#define endl '\n'

bool graph[105][105];
bool visit[105];
 int n,k;

void bfs()
{
  int q[105];int tt=-1,hh=0;
  q[++tt]=1;
  visit[1]=1;
  while(hh<=tt)
  {
    int cur=q[hh++];
    rep(i,1,n)
    {
      if(graph[cur][i]&&!visit[i])
      {
        q[++tt]=i;
        visit[i]=1;
      }
    }
  }
}
int main()
{
  std::ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
 
  cin>>n>>k;
  rep(i,1,k)
   {
    int a,b;cin>>a>>b;
    graph[a][b]=1;
   }
  bfs(); 
  rep(i,1,n)
  {
    if(!visit[i])
    {
      cout<<"-1";
      return 0;
    }
  }
  cout<<"1";
  
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值