64. 最小路径和
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
解题思路:
核心思路是分解最小路径和的递推关系:
到达网格中(i,j)位置的最小路径和,等于当前单元格的值加上「从上方(i-1,j)到达的最小路径和」与「从左方(i,j-1)到达的最小路径和」中的较小值(因为只能向下或向右移动)。
具体步骤:
- 边界初始化:
- 第一行的所有位置(0,j)只能从左侧移动到达,因此最小路径和为从左上角开始的累加值(grid[0][j] += grid[0][j-1])。
- 第一列的所有位置(i,0)只能从上方移动到达,因此最小路径和为从上到下的累加值(grid[i][0] += grid[i-1][0])。
- 原地更新最小路径和:
对于网格中其他位置(i,j)(i>0且j>0),直接在原网格上更新:
grid[i][j] += Math.min(grid[i-1][j], grid[i][j-1])
(当前单元格的最小路径和 = 当前值 + 上方或左方的最小路径和的较小值)。 - 结果:网格右下角(m-1, n-1)的值即为从左上角到右下角的最小路径和。
代码实现:
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
for (int j = 1; j < n; j ++) {
grid[0][j] += grid[0][j - 1];
}
for (int i = 1; i < m; i ++) {
grid[i][0] += grid[i - 1][0];
}
for (int i = 1; i < m; i ++) {
for (int j = 1; j < n; j ++) {
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
}
}
return grid[m - 1][n - 1];
}
}
8万+

被折叠的 条评论
为什么被折叠?



