目录
题目
农夫约翰出门沿着马路散步,但是他现在发现自己可能迷路了!
沿路有一排共 N 个农场。
不幸的是农场并没有编号,这使得约翰难以分辨他在这条路上所处的位置。
然而,每个农场都沿路设有一个彩色的邮箱,所以约翰希望能够通过查看最近的几个邮箱的颜色来唯一确定他所在的位置。
每个邮箱的颜色用 A..Z之间的一个字母来指定,所以沿着道路的 N个邮箱的序列可以用一个长为 N的由字母 A..Z 组成的字符串来表示。
某些邮箱可能会有相同的颜色。
约翰想要知道最小的 K 的值,使得他查看任意连续 K个邮箱序列,他都可以唯一确定这一序列在道路上的位置。
例如,假设沿路的邮箱序列为 ABCDABC
。
约翰不能令 K=3,因为如果他看到了 ABC
,则沿路有两个这一连续颜色序列可能所在的位置。
最小可行的 K 的值为 K=4,因为如果他查看任意连续 44 个邮箱,那么可得到的连续颜色序列可以唯一确定他在道路上的位置。
输入格式
输入的第一行包含 N,第二行包含一个由 N 个字符组成的字符串,每个字符均在 A..Z 之内。
输出格式
输出一行,包含一个整数,为可以解决农夫约翰的问题的最小 K值。
数据范围
1≤N≤100
输入样例:
7
ABCDABC
输出样例:
4
分析题目
根据题意我们知道,这道题就是想要让我们找一个没有相同子串的最小子串。首先我们可以想到遍历,假定一个子串长度从1开始直到n进行遍历,当第一次出现不存在相同子串的子串时,就是我们的答案。
那么如何让它的时间复杂度变得更小呢?让子串长度二分法
#include<bits/stdc++.h>
using namespace std;
string s;
//是否为互不相同的子串
bool check(int mid){
unordered_set<string> hash;
for(int i=0;i+mid-1<=s.size()-1;i++){
string str=s.substr(i,mid);
if(hash.count(str)) return false;
hash.insert(str);
}
return true;
}
int main(){
int n;
cin>>n;
cin>>s;
int l=1,r=n;
while(l<r){
int mid=l+r>>1;
if(check(mid))r=mid;
else l=mid+1;
}
cout<<r<<endl;
return 0;
}
注意事项
这里的l=1,r=n因为是对长度进行二分
知识点
二分法
如果我们想要mid靠左,使用模板一
因为int是向下取整,所以除以二时mid会偏向左边
//模板一
while(l<r){
int mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1
}
如果想要mid靠右,使用模板二
//模板二
while(l<r){
int mid=l+r+1>>1;
if(check(mid)) r=mid-1;
else l=mid;
}
unordered_set
在这里简单介绍一下unordered_set用法
1. substr(int i,int length) 从下标ik开始截取length长度子串
2. count(s),set里存在s的个数
3.insert(s),添加s到set里