1、项目介绍
技术栈:
python3语言、Django框架、numpy、matplotlib库、HTML
requests网络爬虫、采集京东商品数据、后台数据管理、MySQL/sqlite数据库
python语言、Django框架、numpy、matplotlib库、HTML、requests网络爬虫、采集京东商品数据、后台数据管理、MySQL/sqlite数据库
Django和requests可以被用来创建一个京东商品销售数据分析可视化系统。
首先,使用requests库来获取京东的商品销售数据。可以通过京东的API或者爬取京东网站来获取数据。使用requests库发送HTTP请求并解析返回的数据。使用Django框架来创建一个Web应用。Django是一个强大的Python Web框架,提供了一套完整的开发工具和模板系统。它可以用来创建一个用户界面,用于展示和分析京东商品销售数据。
在Django应用中,可以创建一个数据模型来存储京东商品的销售数据。可以定义商品的名称、销售数量、销售额等字段。然后使用Django的数据库迁移工具来创建数据库表。
接下来,可以创建一个视图函数来处理用户请求。视图函数可以从数据库中获取商品销售数据,并对数据进行分析和处理。可以使用Python的数据分析库(如pandas)来进行数据处理和分析。可以计算商品的销售总量、销售额,计算不同商品的销售排名等。
最后,可以使用Django的模板系统来创建一个用户界面,用于展示分析结果。可以使用图表库(如matplotlib、plotly)来创建图表,展示商品销售数据的趋势、排名等。
通过这个系统,用户可以通过浏览器访问网页,输入关键词或选择商品分类来获取京东的商品销售数据,并通过图表和数据分析来了解商品的销售情况和趋势。
2、项目界面
(1)商品销售数据概况
3、项目说明
Django和requests可以被用来创建一个京东商品销售数据分析可视化系统。
首先,使用requests库来获取京东的商品销售数据。可以通过京东的API或者爬取京东网站来获取数据。使用requests库发送HTTP请求并解析返回的数据。
接下来,使用Django框架来创建一个Web应用。Django是一个强大的Python Web框架,提供了一套完整的开发工具和模板系统。它可以用来创建一个用户界面,用于展示和分析京东商品销售数据。
在Django应用中,可以创建一个数据模型来存储京东商品的销售数据。可以定义商品的名称、销售数量、销售额等字段。然后使用Django的数据库迁移工具来创建数据库表。
接下来,可以创建一个视图函数来处理用户请求。视图函数可以从数据库中获取商品销售数据,并对数据进行分析和处理。可以使用Python的数据分析库(如pandas)来进行数据处理和分析。可以计算商品的销售总量、销售额,计算不同商品的销售排名等。
最后,可以使用Django的模板系统来创建一个用户界面,用于展示分析结果。可以使用图表库(如matplotlib、plotly)来创建图表,展示商品销售数据的趋势、排名等。
通过这个系统,用户可以通过浏览器访问网页,输入关键词或选择商品分类来获取京东的商品销售数据,并通过图表和数据分析来了解商品的销售情况和趋势。
4、核心代码
from django.shortcuts import render,HttpResponse,reverse,redirect
from django.contrib.auth.decorators import login_required
from Electronics import models
from django.db.models import Q
from django.shortcuts import get_object_or_404,HttpResponseRedirect
import json
import random
# from .xietong import UserCf
# Create your views here.
@login_required
def index(request):
if request.method == 'GET':
datas = models.XinXi.objects.all().order_by('-id')[:10]
return render(request,r"projects\table_s.html",locals())
@login_required
def user_profile(request):
if request.method == 'GET':
return render(request,'projects/user-profile.html',locals())
@login_required
def update_user(request):
if request.method == 'GET':
data = models.Users.objects.get(username=request.user.username)
return render(request,'projects/form_validations.html',locals())
elif request.method == 'POST':
datas = models.Users.objects.get(username=request.user.username)
error = {}
data = request.POST
email = data.get('email','')
if email != '' and '@' in str(email):
email = email
else:
error['email'] = '邮箱格式错误'
age = data.get('age','')
try:
int(age)
if age != '' and 0 < int(age) and int(age) < 120:
age = age
else:
raise Exception('年龄错误')
except:
error['age'] = '年龄错误'
set = data.get('set','')
if set != '' and str(set) in ['男','女']:
set = set
else:
error['set'] = '性别格式错误'
if error != {}:
return render(request,'projects/form_validations.html',context={'data':datas,'error':error})
else:
models.Users.objects.filter(username=request.user.username).update(email=email,age=age,set=set)
user = request.user
return render(request, 'projects/user-profile.html', locals())
@login_required
def select_all(request):
if request.method == 'POST':
data = request.POST.get('projects_name', '')
if data == '':
datas = models.XinXi.objects.all().order_by('-id')[:10]
elif data == 'all':
datas = models.XinXi.objects.all()
else:
datas = models.XinXi.objects.filter(Q(name__icontains=data)|Q(shopname__icontains=data)|Q(pinpai__icontains=data)|Q(xinghao__icontains=data)).order_by('-count')
return render(request,'projects/table_s.html',context={'datas':datas})
import os
import subprocess
@login_required
def spiders(request):
if request.user.is_superuser:
paths = os.path.dirname(os.path.abspath(__file__)) + os.sep + 'spider.py'
cmd = "python " + paths
print(cmd)
res = subprocess.Popen(cmd,shell=True)
dicts = {
"state": True,
"content": "启动成功 ",
}
return HttpResponse(json.dumps(dicts))
@login_required
def fenxi(request):
if request.method == 'GET':
datas = models.XinXi.objects.all()
num1 = len(models.XinXi.objects.filter(Q(price__gt=0) & Q(price__lte=1000)))
num2 = len(models.XinXi.objects.filter(Q(price__gt=1000) & Q(price__lte=2000)))
num3 = len(models.XinXi.objects.filter(Q(price__gt=2000) & Q(price__lte=3000)))
num4 = len(models.XinXi.objects.filter(Q(price__gt=3000) & Q(price__lte=4000)))
num5 = len(models.XinXi.objects.filter(Q(price__gt=4000) & Q(price__lte=100000)))
chaping_datas = models.XinXi.objects.all().order_by('-chaping')[:5]
haoping_datas = models.XinXi.objects.all().order_by('haoping')[:5]
return render(request,'projects/fenxi.html',locals())
@login_required
def spiders1(request):
if request.user.is_superuser:
paths = os.path.dirname(os.path.abspath(__file__)) + os.sep + 'fenxi.py'
cmd = "python " + paths
print(cmd)
res = subprocess.Popen(cmd,shell=True)
dicts = {
"state": True,
"content": "启动成功 ",
}
return HttpResponse(json.dumps(dicts))
@login_required
def item(request,id):
if request.method == 'GET':
data = get_object_or_404(models.XinXi,pk=id)
datas = models.DianZan.objects.all()
dicts = {}
for dat1 in datas:
if dicts.get(dat1.user.username, '') == '':
dicts[dat1.user.username] = {}
dicts[dat1.user.username][dat1.xinxi.id] = dat1.xinxi.avgScore
else:
dicts[dat1.user.username][dat1.xinxi.id] = dat1.xinxi.avgScore
print(dicts)
try:
userCf = UserCf(data=dicts)
recommandList=userCf.recomand(request.user.username, 2)
# # print("最终推荐:%s"%recommandList)
r = userCf.recommend(request.user.username)
datas = []
for rs in r:
datas.append(get_object_or_404(models.XinXi,pk=rs[0]))
except:
datas = models.XinXi.objects.all().order_by('-avgScore')[:3]
return render(request,'projects/detailed.html',locals())
@login_required
def dianzan(request,id):
if request.method == 'GET':
data = get_object_or_404(models.XinXi,pk=id)
if not models.DianZan.objects.filter(Q(user=request.user)&Q(xinxi=data)):
models.DianZan.objects.create(
user=request.user,
xinxi=data
)
dicts = {
"state": True,
"content": "点赞成功 ",
}
return HttpResponse(json.dumps(dicts))
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅