机器学习/深度学习
机器学习/深度学习
苏格拉没底——
一沙一世界
展开
-
数据挖掘 charter5 —— 聚类算法
聚类算法原创 2021-03-26 14:29:42 · 109 阅读 · 0 评论 -
html_xml_json
1.xmlextensible markup language 可拓展标记语言 作用: 被设计用来 存储 和 传输 数据 类似html的标记语言 htmo 超文本标记语言,被设计用来 显示数据 xml 可拓展标记语言,被设计用来 存储和传输数据 特点:没有 像html那样预定义的标签 被用来 存储,结构化和传输信息...原创 2021-03-25 17:17:12 · 182 阅读 · 0 评论 -
pd_os/csv/excel
1. osimport osos.getcwd() #获取当前工作路径os.chdir( ' ' ) # 改变当前路径df = pd.read_csv( filepath.csv , encoding = 'utf-8' , nrows = 10 , dtype = { } , na_values = 1.4 )df = pd.read_excel ( filepath.xls , sheet_name = '' )2. csvdf = pd.read_csv('i...原创 2021-03-24 17:48:55 · 144 阅读 · 0 评论 -
数据挖掘——charter 4 分类与回归算法
分类回归算法原创 2021-03-22 23:49:46 · 147 阅读 · 1 评论 -
数据挖掘——charter3 关联规则挖掘
关联规则挖掘原创 2021-03-21 11:45:04 · 126 阅读 · 0 评论 -
数据挖掘——charter2 数据特征分析与预处理
数据特征分析与预处理原创 2021-03-21 00:09:06 · 186 阅读 · 0 评论 -
python机器学习软件包
速查表 Scikit-learn IPython Web GUI原创 2021-02-12 15:36:36 · 128 阅读 · 0 评论 -
matplotlib速查表
速查表原创 2021-02-10 17:15:13 · 117 阅读 · 0 评论 -
机器学习介绍
Introduction原创 2021-02-06 21:28:32 · 64 阅读 · 0 评论 -
pandas数据清洗与整理_isnull() / concat() / merge() / str / duplicates() / replace()
速查表原创 2021-02-03 16:09:11 · 86 阅读 · 0 评论 -
pandas外部数据读取与存储
常用方法速查表原创 2021-02-02 14:06:45 · 83 阅读 · 0 评论 -
Pandas速查表
pandas原创 2021-01-24 22:44:13 · 96 阅读 · 0 评论 -
pandas读取json数据的两种方法
1.import pandas as pdimport numpy as npfrom pandas import DataFrame,Seriesimport jsonwith open(r'C:\Users\92448\Desktop\jupyter\material\源码、数据、表格\数据\eueo2012.json') as f: obj = f.read() result = json.loads(obj) df = DataFrame(result).原创 2021-01-24 22:38:22 · 1915 阅读 · 0 评论 -
python连接mysql数据库
1.连接import pymysql#创建一个连接对象conn = pymysql.connect( host = 'localhost', user = 'root', passwd = '123456', db = 'mydb', )2.建表# 创建光标对象 通过光标对象进行操作cursor = conn.cursor()create = """ CREATE TABLE ch4ex9 ( .原创 2021-01-24 22:33:38 · 194 阅读 · 0 评论 -
Numpy速查表
Numpy原创 2021-01-16 21:56:26 · 189 阅读 · 0 评论 -
plt
plot(x, y) # plot x and y using default line style and color plot(x, y, 'bo') # plot x and y using blue circle markers plot(y) # plot y using x as index array 0..N-1 plot(y, 'r+') # ditto, but with red plusses ...原创 2020-12-26 17:59:20 · 122 阅读 · 1 评论 -
matplotlib.pyplot 画图 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = False原创 2020-12-26 17:35:53 · 779 阅读 · 1 评论 -
用knn算法对鸢尾花数据集进行分类
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.neighbors import KNeighborsClassifierdef knn_selector(): iris = load_iris() x_tra.原创 2020-12-25 11:08:01 · 1769 阅读 · 1 评论 -
Sklearn_入门
1. Sklearn简介Scikit-learn(Sklearn) 是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression),降维(Dimensionality Reduction),分类(Classfication),聚类(Clustering)等方法。面临不同的机器学习问题,采用不同的方法。Sklearn 具有如下特点:简单高效的数据挖掘与分析工具 建立在Numpy,Scipy,Matplotlib之上2.Sklearn 安装Sklearn 安装原创 2020-12-24 16:16:51 · 3840 阅读 · 0 评论 -
pd.DataFrame
gitee 缺失数据处理原创 2020-12-21 10:14:14 · 157 阅读 · 0 评论 -
numpy 与 pandas 的区别
numpy类型会出现如下情况,而pandas会自动转换数据类型In [46]: tmp[0] = np.nan---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-46-1b66276310ce> in <原创 2020-12-21 10:01:16 · 383 阅读 · 0 评论 -
pd.DataFrame 缺失数据的处理
pd.notnull(df)pd.isnull(df)df.dropna(axis=0,how='any',inplace=False) 默认df.dropna(axis=1,how='all',inplace=True) 对df本身产生影响In [2]: import pandas as pdIn [3]: import numpy as npIn [4]: df = pd.DataFrame(np.arange(12).reshape((3,4)),index=l...原创 2020-12-20 14:02:07 · 1114 阅读 · 3 评论 -
Series_1
gitee原创 2020-12-17 16:12:37 · 122 阅读 · 0 评论 -
Numpy_1
gitee原创 2020-12-07 23:27:45 · 104 阅读 · 0 评论 -
Python pip 常用指令
pip 是 python包管理工具,提供了对python包的查找,下载,安装,卸载等功能。anaconda 发行版本的 python 自带 便捷的包资源管理器 与 一些常用 包pip --version #查看版本pip --help 查看帮助pip install package #默认安装最新的包pip install package==version #安装某一个版本的包pip uninstall package #卸载#在使用pip安装python的一些包的..原创 2020-11-18 21:19:07 · 269 阅读 · 0 评论 -
鸢尾花数据集基本用法
Iris鸢尾花数据集是一个经典的数据集。包含3类共150条记录,每类各50项数据,每一条记录都有四个体征。可以通过这四个特征来预测鸢尾花属于哪一个品种。一.鸢尾花数据集首先导入数据集,用pandas读入iris.csv数据集,读取后的数据集类型是dataframeimport pandas as pdiris = pd.read_csv("./data/iris.csv")输出数据集的描述性信息iris.info()类型,下标范围,列数,各列的一些信息,列中数据的类型原创 2020-11-17 21:30:14 · 8104 阅读 · 1 评论