Efficient Estimation of Word Representations in Vector Space 笔记

先上这篇paper链接:https://arxiv.org/pdf/1301.3781.pdf

摘要

这篇paper介绍了两种可从大规模数据集计算continuous vector representations of words的模型。(这边的continuous或可理解为上下文中心词是连在一起的;亦或相对于one-hot编码的非0即1,各维度上都是实数)。在单词相似性任务中衡量这些representations 的性能,并将结果与以前基于不同类型神经网络的优秀的模型进行比较。在更低的计算成本下,准确度有了很大的提高。这些vectors在测试集上能很好的捕捉到语意和句法的相似性(we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.)。

1 引言

当时很多的NLP算法,将words当作最小的原子用词典中的下标表示,缺点是没有words间相似性的概念,优点是简单(大训练集上的简单模型的表现优于小训练集上的复杂模型,在有限的计算资源和时间复杂度下,简单的模型能作用于更大的训练集)、鲁棒【simplicity, robustness and the observation that simple models trained on huge amounts of data outperform complex systems trained on less data】。例如N-gram模型能作用于万亿级别单词的数据集。

但是在很多任务中简单模型表现不佳。例如自动语音识别领域的数据比较少,模型表现与高质量的转录语音数据的量相关,通常只有百万级别。机器翻译领域,某些语言的语料也只有数十亿级别乃至更少。在这些情况下,对简单模型的一般改进并不能拿到优异的表现。

现在的技术使得在更大的数据上训练更复杂的模型成为可能,复杂模型的表现通常也优于简单模型。最成功的案例是use distributed representations of words。例如基于神经网络的语言模型明显优于N-gram。

1.1 文章的主旨

文章旨在从具有百万级别的单词、规模在数十亿级别的语料中学习高质量的单词的向量表示【learning high-quality word vectors from huge data sets with billions of words, and with millions of words in the vocabulary】。作者表示,当单词向量的维度在50-100之间的时候,以往的模型很难支撑起在数亿级别的语料上进行训练。

文章利用已有的评价单词向量质量的方法,不仅期待相似的单词向量彼此临近,还期待单词能拥有多种维度的相似性multiple degrees of similarity】。现实也确实如此,例如名词有多种后缀,在词向量的子空间搜索相似的词,通常也能发现这些词有相同的结尾【This has been observed earlier in the context of inflectional languages - for example, nouns can have multiple word endings, and if we search for similar words in a subspace of the original vector space, it is possible to find words that have similar endings.】。

这种相似性已经超越了简单的句法规则。将代数运算用在词向量上,例如vector(“King”)- vector("Man") + vector("Woman"),我们会发现得到的向量与单词Queen的向量表示很临近。

文章通过新的模型结构来最大限度地提高这些向量运算的准确性,以保持单词之间的线性规律。文章设计新的综合的测试集来衡量句法和语法规律【syntactic and semantic】,并表明可以以高的准确率学习到很多类似的规律。文章还在各种训练集上,讨论了词向量的维度对训练时间和准确率的影响。

2. 模型结构

之前有用LDA和LSA来得到词的continuous representations。相对于LSA,神经网络模型能很好的提供保持单词之间的线性规律,而LSA在训练大规模数据集的时候代价高昂。

文章用模型可学习的参数来表示模型的复杂度【define first the computational complexity of a model as the number of parameters that need to be accessed to fully train the model】。比较不同模型的复杂度公式如下:

O = E \times T \times Q

其中,E是训练的轮数,T是训练集的单词数,Q是每个模型的复杂度。

2.1 Feedforward Neural Net Language Model (NNLM)前馈神经网络语言模型

附这篇文章地址:https://jmlr.csail.mit.edu/papers/volume3/bengio03a/bengio03a.pdf

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在全轮驱动(AWD)车辆中进行车速估计是一项重要的任务。估计车速可以帮助驾驶员更好地了解车辆的动态状况,确保驾驶的安全性。 首先,车辆的车速可以通过使用车辆自带的速度传感器来估计。这些传感器可以测量车轮旋转的速度,然后通过车辆的车轮直径等参数进行计算,从而得出车速的估计值。 其次,车速的估计还可以通过使用车辆上安装的惯性测量单元(IMU)进行。IMU可以测量车辆的加速度和旋转速度,通过对这些数据进行积分和滤波处理,可以得到车辆的位移和旋转角度。然后,通过这些数据计算出车辆的车速。 另外,车辆上的其他传感器也可以辅助车速的估计。例如,使用GPS可以测量车辆在地球表面上的位置变化,可以通过这些位置数据的变化来计算车速。另外,使用雷达或相机等传感器可以监测周围环境中的物体移动情况,通过分析这些移动的物体的速度和方向,可以得到车辆的车速估计值。 总之,在AWD车辆中进行车速估计是一项复杂的任务,需要结合多种传感器和数据进行计算和分析。准确的车速估计对于驾驶员的安全和行车控制至关重要。 ### 回答2: 在AWD车辆中估计车速可以通过多种方式来完成。其中一种方法是使用车辆的制动系统来估计车速。制动系统通过监测车辆的轮胎旋转速度来估计车速。当车辆行驶时,每个轮胎的旋转速度会根据车辆的速度而有所变化。通过比较不同轮胎的旋转速度,可以获得一个接近实际车速的估计。 另一种常见的方法是使用车辆的动力系统来估计车速。AWD车辆通常配备有多个驱动轴,每个驱动轴都有一个独立的动力输出装置。通过监测不同驱动轴的动力输出和转速,可以计算出车辆的速度。 除了以上两种方法外,还可以使用车辆的惯性传感器来估计车速。惯性传感器可以检测车辆加速度的变化,并根据这些变化来估计车速。这种方法相对于其他方法更加灵活,可以适用于各种道路和驾驶条件。 需要注意的是,这些方法都是基于估计和计算而来的,可能存在一定的误差。车辆的负载、行驶条件、轮胎磨损等因素都会对估计结果产生影响。因此,在估计车速时需要考虑这些因素,并进行适当的校正和调整,以提高估计精度。 ### 回答3: 在全轮驱动车辆中,估计车辆速度的主要方法有多种。其中一种常用的方法是使用车辆的转速和轮胎直径来进行估算。当车辆在行驶过程中,发动机的转速会通过传动装置传递给车轮,从而推动车辆前进。因此,通过测量发动机转速可以推断车辆的速度。同时,了解车辆所使用的轮胎直径也能提供一定的参考,因为车轮每转一圈所走过的距离与其直径有关。 另外一种估算车辆速度的方法是使用车辆的里程表和所用时间。里程表记录了车辆行驶的总距离,而所用时间可以通过计时器或车载导航系统等设备来获得。通过计算车辆在一段时间内行驶的距离,再与所用的时间进行比较,就可以估算出车辆的速度。 除了以上两种方法,现代车辆中也经常使用车载传感器来测量车辆的速度。这些传感器可以测量车轮的转速,然后通过电子控制单元(ECU)计算出车辆的速度。这种方法通常比较精确,可以准确地估算车辆的实际速度。 综上所述,在全轮驱动车辆中,估算车辆速度可以使用车辆转速和轮胎直径的关系、里程表和时间的关系以及车载传感器等方法。这些方法各有其优势和适用场景,在实际应用中可以根据需要选择合适的方法进行估算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值