Java实现八大排序

前言

八大排序,三大查找是《数据结构》当中非常基础的知识点,在这里为了复习顺带总结了一下常见的八种排序算法。
常见的八大排序算法,他们之间关系如下:
在这里插入图片描述
复杂度对比:
在这里插入图片描述

1. 冒泡排序

冒泡排序有两个版本,一个是原始版本,第二个是性能优化版本代码如下:

// 原始版本
   // 较大的数据向后排
   public static void bubbleSort1(int[] arr) {
   	int temp = 0;
   	int len = arr.length;
   	for (int i = 0; i < len - 1; i++) {
   		for (int j = 0; j < len - i - 1; j++) {
   			if (arr[j] > arr[j + 1]) {
   				temp = arr[j];
   				arr[j] = arr[j + 1];
   				arr[j + 1] = temp;
   			}
   		}
   	}
   }

   // 优化版本
   public static void bubbleSort2(int[] arr) {
   	int temp = 0;
   	boolean flag = false;// 标记
   	int len = arr.length;
   	for (int i = 0; i < len - 1; i++) {
   		for (int j = 0; j < len - i - 1; j++) {
   			if (arr[j] > arr[j + 1]) {
   				flag = true;
   				temp = arr[j];
   				arr[j] = arr[j + 1];
   				arr[j + 1] = temp;
   			}
   		}

   		if (flag) {
   			flag = false;
   		} else {
   			break;// 再一趟对比中,一次交换都没有发生过,表示前面都是有序的
   		}
   	}
   }

2. 选择排序

小数据往前排
public static void sort(int[] arr) {
		int temp = 0;
		int len = arr.length;
		for (int i = 0; i < len - 1; i++) {
			for (int j = i + 1; j < len; j++) {
				if (arr[i] > arr[j]) {
					temp = arr[i];
					arr[i] = arr[j];
					arr[j] = temp;
				}
			}
		}

	}

3. 插入排序

public static void insertSort(int[] arr) {
		// 默认情况下把数据第一个数字当成有序的,后面的无序往前面插入
		for (int i = 1; i < arr.length; i++) {
			int val = arr[i];
			int index = i - 1;

			while (index > -1 && arr[index] > val) {
				arr[index + 1] = arr[index];
				index--;
			}
			// 当index=-1时就是多减少1,所以要加1
			arr[index + 1] = val;
		}
	}

4. 希尔排序

// 交换法
	public static void shellSort1(int[] arr) {
		int len = arr.length;
		int temp = 0, k = len / 2;
		while (k > 0) {
			// 插入法
			for (int i = k; i < arr.length; i++) {
				for (int j = i - k; j >= 0; j -= k) {
					if (arr[j] > arr[j + k]) {
						temp = arr[j];
						arr[j] = arr[j + k];
						arr[j + k] = temp;
					}
				}
			}
			k /= 2;
		}
	}

	// 移位法
	public static void shellSort2(int[] arr) {
		int len = arr.length;
		int temp = 0, k = len / 2, index = 0;// 分k组
		while (k > 0) {
			// 对每个组进行排序
			for (int i = k; i < arr.length; i++) {
				temp = arr[i];// 记录arr[i]方便接下来移位
				index = i - k;// 向前遍历
				// 此循环用来保证 较大的向后移位
				while (index >= 0 && temp < arr[index]) {
					arr[index + k] = arr[index];
					index -= k;//每两个元素之间相隔k个元素
				}
				//上面多移动了一次,所以index+1,把这组最后一个赋值给前面的
				arr[index + k] = temp;
			}
			k /= 2;// 再进行分
		}
	}

5. 归并排序

// 合并数据
	public static void merge(int[] arr, int left, int right, int mid, int[] temp) {
		int i = left, j = mid + 1;
		int k = 0, t = 0;
		// 将arr数组的元素排序放到temp数组
		// 左右排序合并合并
		while (i <= mid && j <= right) {
			if (arr[i] <= arr[j]) {
				temp[k] = arr[i];
				k++;
				i++;
			} else {
				temp[k] = arr[j];
				k++;
				j++;
			}
		}

		// 将没合并完成的合并
		while (i <= mid) {
			temp[k++] = arr[i++];
		}
		while (j <= right) {
			temp[k++] = arr[j++];
		}

		// //将temp数组的元素排序放到arr数组
		// 注意:是从本方法的left开始向后合并,直到本方法参数的right,并不是从arr 的头开始合并
		int templeft = left;
//		System.out.printf("templeft=%d, right=%d\n", templeft, right);

		while (templeft <= right) {
			arr[templeft] = temp[t];
			templeft++;
			t++;
		}
//		print(arr);
//		print(temp);

	}

	// 边分离边合并
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
//		print(temp);

		if (left < right) {
			// 递归分离
			int mid = (left + right) / 2;// 一分为二
			mergeSort(arr, left, mid, temp);// 分离前半部分
			mergeSort(arr, mid + 1, right, temp);// 分离后半部分
			merge(arr, left, right, mid, temp);// 合并
		} else {
			return;
		}

	}

6. 快速排序

/**
	 * 快速排序
	 * 
	 * @param r数组
	 * @param first 需要排序数组的左边索引
	 * @param last  需要排序的数组的右边索引
	 */
	public static void quickSort(int r[], int first, int last) {
		int x, i, j, t;
		if (first < last) {// first 必须小于last 否则会死递归
			x = r[first];// 记录下第一个值
			i = first;
			j = last;
			while (i != j) {
				while (i < j && r[j] >= x)// 向前移动直到发现值大于比较值 切记i<j这循环在前
					j--;
				while (i < j && r[i] <= x)// 向后移动直到发现值小于比较值,当i==j必须截至,
					i++;
				if (i < j) {// i 绝对不能大于j,因为r[j]后面的数据都是大于x
					// 交换数据
					t = r[i];
					r[i] = r[j];
					r[j] = t;
				}

			}

			r[first] = r[i];// 此时r[i]<=r[first],且r[i]后面的数据都大于x
			r[i] = x;// 把x赋值给r[i]
			quickSort(r, first, i - 1);// 继续向前递归
			quickSort(r, i + 1, last);// 向后递归
		}

	}

7. 堆排序

	public static void heapSort(int[] arr) {
		// 从上朝下进行大顶堆调整,整体变成大顶堆
		for (int i = arr.length / 2 - 1; i >= 0; i--) {
			adjustHeap(arr, i, arr.length);
		}

		int temp = 0;

		for (int i = arr.length - 1; i >= 0; i--) {
			//将最大的数据放到树的最后一个叶节点,然后不再进行其他操作
			temp = arr[0];
			arr[0] = arr[i];
			arr[i] = temp;
			//从头开始调整。注意,由于上面的整体进行大顶堆调整,此操作只会堆根节点下面一边的子树进行调整,但是最大值不受影响
			adjustHeap(arr, 0, i);
		}
	}

	// 讲以i为非叶子节点的调整为大顶堆
	// i,表示非叶子结点的序号
	// len表示数组的长度
	public static void adjustHeap(int[] arr, int i, int len) {

		int temp = arr[i];
		for (int j = i * 2 + 1; j < len; j = j * 2 + 1) {
			if (j + 1 < len && arr[j] < arr[j + 1]) {//比较左右子树的大小
				j++;
			}
			if (arr[j] > temp) {
				arr[i] = arr[j];
				i = j;// i指向当前结点继续朝下遍历
			} else {
				break;
			}
		}
		//该结点的值赋给其替换的子树
		arr[i] = temp;

	}

8. 基数排序(桶排序)

public static void radixSort(int[] arr) {
		int max = arr[0];
		int len = arr.length;
		for (int i = 0; i < len; i++) {// 找出数组中最大的数
			if (arr[i] > max)
				max = arr[i];
		}
		int maxlen = (max + "").length();// 计算最大数的数字长度
		int[][] bucket = new int[len][10];// 用来表示桶
		int[] bucketElements = new int[10];// 用来计算每个桶存在的数量
		int index = 0;
		for (int i = 0, n = 1; i < maxlen; i++, n *= 10) {
			for (int j = 0; j < len; j++) {

				index = arr[j] / n % 10;// 用来表示从arr[j]中取出的i位数

				bucket[bucketElements[index]][index] = arr[j];// 把数放到第index号桶中第bucketElements[index]位
				bucketElements[index]++;// 桶的计数器数量加一
			}
			int count = 0;// arr数组复制的计数器
			// 将桶中的数据再复制到arr数组
			for (int j = 0; j < 10; j++) {// 遍历bucketElements数组
				if (bucketElements[j] != 0) {
					for (int l = 0; l < len; l++) {// 遍历bucket数组
						if (bucket[l][j] != 0) {
							arr[count] = bucket[l][j];
							count++;
						}
						bucket[l][j] = 0;// 结束后要置0,以供下一个循环使用
					}
					bucketElements[j] = 0;// 结束后要置0,以供下一个循环使用
				}
			}

		}

	}

下面我们对八大排序进行性能测试:

package sort;

import java.util.Arrays;

public class Test {

	public static void main(String[] args) {
		long t1, t2;
		t1 = System.currentTimeMillis();
		BubbleSort.bubbleSort1(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("冒泡排序优化前耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		BubbleSort.bubbleSort2(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("冒泡排序优化后耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		SelectSort.selectSort(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("选择排序耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		InsertSort.insertSort(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("插入排序耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		ShellSort.shellSort1(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("希尔排序优化前耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		ShellSort.shellSort2(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("希尔排序优化后耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		MergeSort.mergeSort(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("归并排序耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		QuickSort.quickSort(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("快速排序耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		HeapSort.heapSort(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("堆排序耗时:" + (t2 - t1));

		t1 = System.currentTimeMillis();
		RadixSort.radixSort(randomArr(80000));
		t2 = System.currentTimeMillis();
		System.out.println("基数排序耗时:" + (t2 - t1));

	}

	public static void print(int[] arr) {
		System.out.println(Arrays.toString(arr));
	}
	//生成随机数组
	public static int[] randomArr(int k) {
		int[] arr = new int[k];
		for (int i = 0; i < k; i++) {
			arr[i] = (int) (Math.random() * k * 100);
		}
		return arr;
	}

}

在这里插入图片描述
由于每次用的数组数据不一样,存在优化后排序时间比优化前长的现象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值