搭建spark on yarn 集群

两台用的都是ubuntu

IP 主机名
192.168.22.137 spark-master
192.168.22.150 spark-slave1

更改主机名

确定每个节点的主机名与它在集群中所处的位置相同
如果不同,需要修改vi /etc/hostname
重启生效

可能需要些安装某些工具包

  • 更换sources源
vi /etc/apt/sources.list
deb http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse
  • apt install net-tools

  • apt-get install iputils-ping

修改各主机的hosts文件

vi /etc/hosts
添加以下内容

192.168.22.137 spark-master
192.168.22.150 spark-slave1

SSH免密登录

我看了网上别人的说只需要安装server,但是我没有成功,我安装了server和client才行

apt-get install openssh-client
apt-get install openssh-server

# 启动ssh服务
etc/init.d/ssh start

*关于ssh服务可以参照这个链接
http://linux.it.net.cn/e/server/ssh/2015/0501/14838.html*

紧接着就是配置各主机的免密登录

  • 所有的主机都需要生成私钥和公钥(直接回车)

ssh-keygen -t rsa

  • 将所有主机的~/.ssh/id_rsa.pub都要放在master节点的~/.ssh/目录下(最好更改用以区分)

我使用的lrzsz工具(有点笨)。之后再主机执行

你也可以使用scp ~/.ssh/id_rsa.pub root@<hostname|ip>:~/.ssh/id_rsa.pub.slave1

  • 将所有公钥加到用于认证的公钥文件authorized_keys中
cat ~/.ssh/id_rsa.pub* >> ~/.ssh/authorized_keys

此时~/.ssh/再将~/.ssh/authorized_keys拷贝其他节点,到此个主机就完成了免密登录

验证一下:

ssh spark-master
ssh spark-slave1

如果出现如下,就说明你成功了

1.png

所需环境配置

准备软件

用的版本不是最新的,看个人需要,但要保证各软件的版本要互相支持

.
├── hadoop-2.6.5.tar.gz
├── jdk-8u171-linux-x64.tar.gz
├── scala-2.10.4.tgz
└── spark-1.6.3-bin-hadoop2.6.tgz

可直接去各大官网下载,如果你想省事,直接从网盘里下载也行

https://pan.baidu.com/s/1vSu-6OTMvkROCBsiJwbMWQ

统一配置环境

我将所有的软件放在/spark/software/目录下、解压与修改文件名,然后统一配置环境变量

vi /etv/profile

假如如下内容

export JAVA_HOME=/spark/software/java
export JRE_HOME=$JAVA_HOME/jre
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
export CLASSPATH=$CLASSPATH:.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib

export SCALA_HOME=/spark/software/scala
export PATH=$PATH:$SCALA_HOME/bin

export HADOOP_HOME=/spark/software/hadoop
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export YARN_HOME=/spark/software/hadoop
export YARN_CONF_DIR=${YARN_HOME}/etc/hadoop

然后执行source /etc/profile 另其生效
然后测试,出现如下说明成功了
2.png

当然你也可以吧hadoop和spark假如path中,这样就可以随时使用hdfsspark-submit命令了

其他主机做同样的操作

提示:各主机最好都统一路径,这样修改一个文件,然后将文件直接远程拷贝到其他主机上就行了

HADOOP配置

/spark/software/hadoop/etc/hadoop目录下需要配置以下几个文件:

hadoop-env.sh,
yarn-env.sh,
slaves,
core-site.xml,
hdfs-site.xml,
maprd-site.xml,
yarn-site.xml

hadoop-env.sh

export JAVA_HOME=/spark/software/java

yarn-env.sh

export JAVA_HOME=/spark/software/java

slaves

spark-slave1

(这里我只添加了一个slave,你也可以把master加上去)

core-site.xml

添加如下:

<property>
    <name>fs.defaultFS</name>
    <value>hdfs://spark-master:9000/</value>
</property>
<property>
    <name>hadoop.tmp.dir</name>
    <value>file:/spark/software/hadoop/tmp</value>
</property>

hdfs-site.xml

添加如下:

<property>
    <name>dfs.namenode.secondary.http-address</name>
    <value>spark-master:9001</value>
</property>
<property>
    <name>dfs.namenode.name.dir</name>
    <value>file:/spark/software/hadoop/dfs/name</value>
</property>
<property>
    <name>dfs.datanode.data.dir</name>
    <value>file:/spark/software/hadoop/dfs/data</value>
</property>
<property>
    <name>dfs.replication</name>
    <value>3</value>
</property>

maprd-site.xml

添加如下

<property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
</property>
<!-- 下面的视情况而配置你可以先只配置上面的即可 -->
<property>
    <name>mapreduce.map.memory.mb</name>
    <value>1536</value>
</property>
<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx1024M</value>
</property>
<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>1024</value>
</property>
<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx1024M</value>
</property>

yarn-site.xml

添加如下

<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>
<property>
    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
    <name>yarn.resourcemanager.address</name>
    <value>spark-master:8032</value>
</property>
<property>
    <name>yarn.resourcemanager.scheduler.address</name>
    <value>spark-master:8030</value>
</property>
<property>
    <name>yarn.resourcemanager.resource-tracker.address</name>
    <value>spark-master:8035</value>
</property>
<property>
    <name>yarn.resourcemanager.admin.address</name>
    <value>spark-master:8033</value>
</property>
<property>
    <name>yarn.resourcemanager.webapp.address</name>
    <value>spark-master:8088</value>
</property>
<!-- 下面是情况而定 具体可以参考这里 http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu-configuration.html-->
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>2000</value>
</property>
<property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>2000</value>
</property>

以上配置完毕之后,要同步到其他主机上,因为配置了免密,可以这样操作

scp /spark/software/hadoop/etc/hadoop/ root@spark-slave1:/spark/software/hadoop/etc/hadoop/

HADOOP启动

进入/spark/software/hadoop目录下
- 格式化namenode
bin/hfds namenode -format

当出现“successful”的字样,就说明成功了

  • 启动dfs
    sbin/start-dfs.sh

  • 启动yarn
    sbin/start-yarn.sh

接下来验证,spark-master 执行jps,有以下几个进程

27570 SecondaryNameNode
27720 ResourceManager
27356 NameNode
32476 Jps

每个slave上应该有以下几个进程

18324 DataNode
18489 NodeManager
21055 Jps

可以在任意一台主机上的浏览器输入

http://spark-master:8088/cluster/nodes     yarn管理界面
http://spark-master:50070                  hdfs页面

yarn.png
hdfs.png

spark 环境

/spark/software/spark/conf目录下修改spark-env.sh(需先拷贝spark-env.sh.template)文件

export SCALA_HOME=spark/software/scala
export JAVA_HOME=/spark/software/java
export HADOOP_HOME=/spark/software/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=spark-master
SPARK_LOCAL_DIRS=/spark/software/spark
SPARK_DRIVER_MEMORY=1G

同样在slaves文件中添加子节点

spark-slave1

同样将这两个文件发送到其他主机对应位置

然后在/spark/software/spark目录下执行

sbin/start-all.sh

浏览器输入

http://spark-master:8080/

spark-ui.png

到此就搭建好了

运行

spark提供了很多例子,我们直接运行即可

# 本地运行
bin/spark-submit examples/src/main/python/pi.py 10 --master local[4]

# Spark Standalone 集群模式运行
bin/spark-submit examples/src/main/python/pi.py 10 --master spark://spark-master:7077

# Spark on YARN 集群上 yarn-cluster 模式运行
bin/spark-submit \
    --class com.spark.WordCount \
    --master yarn-client \
    --driver-memory 1g \
    --executor-cores 1 \
    simple/word-count-1.0-SNAPSHOT.jar # 自己写的单词统计,文件放在了hdfs上

这里注意spark内存使用的配置

遇到的问题

Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

暂时未解决

集群配置参考

可能用到的链接

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qqHJQS/article/details/80183756
上一篇学习Docker之使用docker-compose编配一整套服务
下一篇一张图带你理解和实现RabbitMQ的延迟队列功能
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭