CF1761D Carry Bit

假设有两个整数A,B他们的第 K位都为1 ,那么无论 他们两个的 K + 1位是 0 还是 1都会导致最后f(A,B)少一位,当第K位都为 1,第K + 1 有一个为 1的时候,会使得这个 1 也进位,最后导致f(A,B)少两位。所以可以把题目看成 有几个 以2为第一位,以0为最后一位的 堆。
例如 0 x 1 x 2 x 3 . . . x n x_1 x_2 x_3 ... x_n x1x2x3...xn 2这样的堆,无论 x 1 x 2 x 3 . . . x n x_1 x_2 x_3... x_n x1x2x3...xn 是 1 还是 2都是可以进位的,那么这样子有 3 种取法, 那么 除了以 2为底的 是 0,还是 1都不会进位,所以也是3种取法。 最后我们只需要枚举 这样的堆有几个进行排列组合即可。具体看代码。

#include<iostream>
#include<cmath>

using namespace std;

typedef long long ll;

const int N = 1e6 + 10,mod = 1e9 + 7;

ll f[N],invf[N],Th[N];

ll cal(ll x,ll y){
	if(x < y || y < 0) return 0;
	return f[x] * invf[y] % mod * invf[x - y] % mod;
}

ll qpow(ll a,ll b){
	ll s = 1;
	while(b){
		if(b & 1) s = s * a % mod;
		b >>= 1;
		a = a * a % mod;
	}
	return s;
}

int main(){
	int n,k;
	cin >> n >> k;
	
	f[0] = 1,Th[0] = 1;
	for(int i = 1; i <= n; i++){
		f[i] = f[i - 1] * i % mod;
		Th[i] = Th[i - 1] * 3 % mod;
	}
	
	invf[n] = qpow(f[n],mod - 2);
	for(int i = n - 1; i >= 0; i--){
		invf[i] = invf[i + 1] * (i + 1) % mod;
	}
	
	if(k == 0){
		cout << qpow(3,n) << endl;
		return 0;
	}
	
	ll sum = 0;
	for(int i = 1; i <= k; i++){ //假设有i堆
	
		int need = i - 1 + k;
		if(need <= n){ 
		//当有一个 0....2的堆靠最左的话,就不需要有0. k个数分给i个堆,就是C(k-1,i-1),除了靠墙的堆剩下的堆和剩下的数整合在一起也是需要排列组合。
			sum += cal(k - 1,i - 1) * Th[n - i * 2 + 1] % mod * cal(n - k,i - 1) % mod;
			//cout << sum << "Asd" << endl;
		}
		sum %= mod;
		if(need + 1 <= n){ 
			sum += cal(k - 1,i - 1) * Th[n - i * 2] % mod * cal(n - k,i) % mod;
			//cout << sum << endl;
		}
		
		sum %= mod;
	}
	
	cout << sum << endl;
	
	
	
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值