假设有两个整数A,B他们的第 K位都为1 ,那么无论 他们两个的 K + 1位是 0 还是 1都会导致最后f(A,B)少一位,当第K位都为 1,第K + 1 有一个为 1的时候,会使得这个 1 也进位,最后导致f(A,B)少两位。所以可以把题目看成 有几个 以2为第一位,以0为最后一位的 堆。
例如 0
x
1
x
2
x
3
.
.
.
x
n
x_1 x_2 x_3 ... x_n
x1x2x3...xn 2这样的堆,无论
x
1
x
2
x
3
.
.
.
x
n
x_1 x_2 x_3... x_n
x1x2x3...xn 是 1 还是 2都是可以进位的,那么这样子有 3 种取法, 那么 除了以 2为底的 是 0,还是 1都不会进位,所以也是3种取法。 最后我们只需要枚举 这样的堆有几个进行排列组合即可。具体看代码。
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10,mod = 1e9 + 7;
ll f[N],invf[N],Th[N];
ll cal(ll x,ll y){
if(x < y || y < 0) return 0;
return f[x] * invf[y] % mod * invf[x - y] % mod;
}
ll qpow(ll a,ll b){
ll s = 1;
while(b){
if(b & 1) s = s * a % mod;
b >>= 1;
a = a * a % mod;
}
return s;
}
int main(){
int n,k;
cin >> n >> k;
f[0] = 1,Th[0] = 1;
for(int i = 1; i <= n; i++){
f[i] = f[i - 1] * i % mod;
Th[i] = Th[i - 1] * 3 % mod;
}
invf[n] = qpow(f[n],mod - 2);
for(int i = n - 1; i >= 0; i--){
invf[i] = invf[i + 1] * (i + 1) % mod;
}
if(k == 0){
cout << qpow(3,n) << endl;
return 0;
}
ll sum = 0;
for(int i = 1; i <= k; i++){ //假设有i堆
int need = i - 1 + k;
if(need <= n){
//当有一个 0....2的堆靠最左的话,就不需要有0. k个数分给i个堆,就是C(k-1,i-1),除了靠墙的堆剩下的堆和剩下的数整合在一起也是需要排列组合。
sum += cal(k - 1,i - 1) * Th[n - i * 2 + 1] % mod * cal(n - k,i - 1) % mod;
//cout << sum << "Asd" << endl;
}
sum %= mod;
if(need + 1 <= n){
sum += cal(k - 1,i - 1) * Th[n - i * 2] % mod * cal(n - k,i) % mod;
//cout << sum << endl;
}
sum %= mod;
}
cout << sum << endl;
return 0;
}