K-means算法优化:三种进阶方法详解

K-means算法虽然简单有效,但在实际应用中存在一些局限性。本文将深入介绍三种重要的优化方法:K-means++Mini-Batch K-means核K-means,并通过代码示例展示它们的实现。


一、K-means++:更聪明的初始化方法

原理介绍

传统K-means随机初始化质心可能导致:

  1. 收敛速度慢
  2. 陷入局部最优
  3. 聚类结果不稳定

K-means++通过概率选择优化初始化:

  1. 随机选择第一个质心
  2. 计算每个点到最近质心的距离 D ( x ) D(x) D(x)
  3. 按概率 D ( x ) 2 D(x)^2 D(x)2选择下一个质心
  4. 重复直到选出k个质心

优势

  • 显著提升收敛速度
  • 获得更优的聚类结果
  • 理论保证:近似比 O ( l o g k ) O(log k) O(logk)

代码实现

def kmeans_plusplus_init(points: np.ndarray, k: int) -> np.ndarray:
    """K-means++初始化"""
    n_samples, n_features = points.shape
    
    # 随机选择第一个质心
    centroids = [points[np.random.choice(n_samples)]]
    
    for _ in range(1, k):
        # 计算每个点到最近质心的距离
        distances = np.array([min(np.linalg.norm(p - c) ** 2 for c in centroids) 
                             for p in points])
        
        # 按概率选择下一个质心
        probabilities = distances / distances.sum()
        next_centroid = points[np.random.choice(n_samples, p=probabilities)]
        centroids.append(next_centroid)
    
    return np.array(centroids)

二、Mini-Batch K-means:适合大规模数据

原理介绍

传统K-means需要每次迭代计算所有数据点,计算开销大。Mini-Batch K-means通过:

  1. 每次迭代随机采样一个小批量(mini-batch)
  2. 仅用这批数据更新质心
  3. 引入学习率逐步调整质心位置

优势

  • 内存效率高
  • 适合处理大数据集
  • 在线学习能力
  • 收敛速度更快

代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值