车辆目标检测与跟踪及无人机二维场景分析方法
在交通工程和无人机领域,目标检测与跟踪以及场景分析是至关重要的技术。下面将详细介绍车辆目标检测与跟踪模型以及无人机二维场景分析的相关算法。
车辆目标检测与跟踪模型
数据验证
为了将图像数据转换为适合微观交通模型的格式,提出了数据统一的方法。以Nagel - Schreckenberg元胞自动机模型为切入点,引入了矩阵$P(t)$。该矩阵的元素$p_i$表示$t$时刻车辆的当前状态向量,矩阵元素代表单元格位置$s_i$,由速度$v_i = (v_x, v_y)$以及来自不同分类器的路段描述来表示。车辆的移动遵循元胞模型模拟的交通规则:
$v_i(t) = \min{v_i(t - 1) + 1, g_i(t), v_{max}}$ (1)
$g_i(t) = x_j(t) - x_i(t) - 1$,若$\xi < p$,则$v_i(t) = \min{0, v_i(t) - 1}$ (2)
其中:
- $i$:$t$时刻车辆的编号
- $p$:概率阈值(通常设为0.19)
- $j$:第$i$个位置车辆前方车辆的编号,根据前几帧评估的方向和速度选择
- $s_i(t) = (x_{c_i}, y_{c_i})$:$t$时刻车辆$i$占用的单元格编号
- $\xi$:均匀分布的统计变量(值在[0, 1]范围内)
向量运算分别在$x$和$y$轴上进行。该模型经过改进,能够处理平均速度在90 - 130km/h的各种道路交通条件以及畅通速度为50km/h的城市交通。如果车辆状态变化与元胞模型矛盾,则该变化将被丢弃。为了计算最小帧率,必