StarRocks本地部署

本文详细介绍了如何使用Dockerfile构建StarRocks镜像,包括安装步骤、启动容器、验证部署,并强调了StarRocks的列式存储、MPP架构和水平扩展优势。文中还提到了与其他数据仓库产品的比较,如ClickHouse和ApacheDruid。
摘要由CSDN通过智能技术生成

官方文档
这里基本上是按文档来部署的,为了自己方便测试而纪录。

介绍

StarRocks 是一款高性能分析型数据仓库,使用向量化、MPP 架构、CBO、智能物化视图、可实时更新的列式存储引擎等技术实现多维、实时、高并发的数据分析。StarRocks 既支持从各类实时和离线的数据源高效导入数据,也支持直接分析数据湖上各种格式的数据。StarRocks 兼容 MySQL 协议,可使用 MySQL 客户端和常用 BI 工具对接。同时 StarRocks 具备水平扩展,高可用、高可靠、易运维等特性。广泛应用于实时数仓、OLAP 报表、数据湖分析等场景。

上面这段是直接引用官方的原话。

简单概括起来 Starrocks 有以下特点:

  • 列式存储: 优化了列式存储和向量化查询执行,这对于分析查询通常能提供更好的性能。
  • 实时写入: 支持实时数据写入和查询,这意味着它能够处理近实时的数据分析需求。
  • 水平可伸缩性: 易于横向扩展,可以根据数据量和查询负载增加或减少节点。
  • 高并发: 能够处理高并发查询,适用于多用户环境。
  • MPP架构: 使用MPP架构,可以在多个节点上并行处理查询,提高了查询效率。

MPP 架构是 Massively Parallel Processing(大规模并行处理)架构,它是一种分布式计算架构,可以充分利用多节点的计算能力,实现高性能的数据分析。

StarRocks 的 MPP 架构具有以下特点:

  1. 并行计算:通过 MPP 计算框架,实现 SQL 的并行执行,从而实现良好的交互式分析体验。
  2. 分布式存储:采用分布式架构,对数据表进行水平划分并以多副本存储,支持灵活的集群规模伸缩,能够处理更高级别的数据分析需求。
  3. 弹性容错:支持多副本存储,具备弹性容错能力,能够自动恢复节点故障。
  4. 高可用:元数据和数据都采用多副本存储,并且集群中服务有热备和多实例部署,避免了单点故障。
  5. 扩展性:单集群节点规模可扩展到数百节点。

基于docker安装

注意:这里仅部署一台FE节点以及一到BE节点。在正常应用环境中,一个集群需要部署三个BE节点。

创建dockerfile文件:

FROM centos:centos7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值