百面机器学习/深度学习笔记
文章平均质量分 64
看书笔记,用来记录自己在看书过程中的理解。
小王做笔记
这个作者很懒,什么都没留下…
展开
-
百面机器学习--No.4 模型评估 -- 超参数调优方法
超参数调优方法 Q1: 超参数有哪些调优方法?Q1: 超参数有哪些调优方法?网格搜索穷举出所有参数的搜索值,通过查找搜索范围内的所有的点来确定最优值。这种方法一般会先使用较广的搜索范围和较大的步长, 来寻找全局最优值可能的位置; 然后会逐渐缩小搜索范围和步长, 来寻找更精确的最优值。随机搜索在搜索范围中随机选取样本点,如果样本点集足够大, 那么通过随机采样也能大概率地找到全局最优值, 或其近似值。贝叶斯搜索贝叶斯优化算法通过对目标函数形状进行学习, 找到使目标函数向全局最优值提升原创 2022-01-17 13:27:59 · 534 阅读 · 0 评论 -
百面机器学习--No.4 模型评估 -- 评估方法
模型评估的方法 Q1: 在模型评估过程中, 有哪些主要的验证方法, 它们的优缺点是什么?在机器学习中, 我们通常把样本分为训练集和测试集, 训练集用于训练模型, 测试集用于评估模型。Q1: 在模型评估过程中, 有哪些主要的验证方法, 它们的优缺点是什么?Holdout检验它将原始的样本集合随机划分成训练集和验证集两部分。举例 : 70% 的样本用于模型训练; 30% 的样本用于模型验证, 包括绘制ROC曲线、 计算精确率和召回率等指标来评估模型性能。交叉检验k-fold交叉验证 :原创 2022-01-17 13:02:57 · 1739 阅读 · 0 评论 -
百面机器学习--No.4 模型评估 -- 余弦距离
余弦相似度余弦距离原创 2022-01-17 12:49:55 · 839 阅读 · 0 评论 -
百面机器学习--No.3 模型评估 -- 预测结果的衡量指标和局限性
准确率原创 2022-01-10 20:54:28 · 1303 阅读 · 0 评论 -
百面机器学习 -- No.2 特征工程 -- 训练数据不足的情况下会带来什么问题,如何缓解?
训练数据不足的情况下会带来什么问题,如何缓解?数据不足会带来什么问题如何解决 ?数据不足会带来什么问题机器学习任务的问题,可以简单的理解成寻找最佳的拟合函数和最佳的泛化函数,拟合函数是用来学习历史信息的,泛化函数是用来外推其他数据的(即,预测未来)。但是这两者并不是可以兼得的,我们前期通过先验知识来学习函数,后期通过后验知识来预测标签。在机器学习中, 绝大部分模型都需要大量的数据进行训练和学习(包括有监督学习和无监督学习) , 然而在实际应用中经常会遇到训练数据不足的问题。当训练数据不足时候,就是巧原创 2022-01-07 13:57:48 · 2761 阅读 · 0 评论 -
百面机器学习看书总结 -- No.1 特征工程
特征工程1. 特征归一化Q1. 为什么要做归一化Q2. 决策树不进行归一化的原因2. 类别型特征Q1. 在对数据进行预处理时, 应该怎样处理类别型特征?3. 高维组合特征的处理Q1. 什么是组合特征? 如何处理高维组合特征?1. 特征归一化为了消除数据特征之间的量纲影响, 我们需要对特征进行归一化处理, 使得不同指标之间具有可比性。Q1. 为什么要做归一化对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。 基于梯度下降算法的模型,如果不进行归一化,特征沿梯度方向的下降速度是不原创 2022-01-07 13:30:15 · 842 阅读 · 1 评论