2022北京冬奥会可视化

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言


提示:以下是本篇文章正文内容,下面案例可供参考

一、数据集

1.下载数据集:网址点关注私发
2.转为csv文件保存到本地
3.navicat 连接到MySQL数据库
4.打开nacvicat,选择sys,点击导入向导,将转好的csv文件导入数据库,将表命名为peiking
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
选择编码20906(GB2312)
5.添加字段名:National(国家),NationalEnglish(国家英文),Winner(获奖选手), LargeProject(大项项目),SmallProject(小项项目),MedalType(奖牌类型),AwardTime(获奖日期)
在这里插入图片描述

二、Pycharm

1.打开Pycharm(注意社区版的不行哦),点击右侧的数据库
在这里插入图片描述
2.添加数据源选择MySQL

在这里插入图片描述
3.输入端口等信息,测试连接后确定
在这里插入图片描述
4.新建一个test.py测试数据库连接
在这里插入图片描述

import pymysql
db = pymysql.conner(host='127.0.0.1', user='root', password = '123456', database ='sys')
print(db)

5.在文件->设置->项目->Python编辑器左下角的+号导入需要的库:numpy,pandas,pyecharts,pymysql
在这里插入图片描述
6.点击peiking选择跳到查询数据台
在这里插入图片描述

use sys;#打开sys数据库
SELECT National as 国家, COUNT(*) as 次数 FROM peiking GROUP BY National 

在这里插入图片描述
7.

mport pandas as pd
import numpy as np
import pymysql
from pyecharts import options as opts
from pyecharts.charts import Map, Page, Grid, Bar, Pie

db = pymysql.connect(host='127.0.0.1', user='root', password='123456',database='sys')
cursor = db.cursor() #创建游标
sql = "SELECT NationalEnglish as 国家,COUNT(*) as 奖牌总数 FROM sys.peiking GROUP BY NationalEnglish"
cursor.execute(sql) #游标执行sql语句
results = np.array(cursor.fetchall()) 将游标经过的结果获取到np数组中
print(results)#打印结果

注意:必须得用国家英文,不然在用Map的时候不显示
在这里插入图片描述

def map_one() -> Map:
    world = (
        Map(init_opts=opts.InitOpts(bg_color="#00589F&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值