提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
提示:以下是本篇文章正文内容,下面案例可供参考
一、数据集
1.下载数据集:网址点关注私发
2.转为csv文件保存到本地
3.navicat 连接到MySQL数据库
4.打开nacvicat,选择sys,点击导入向导,将转好的csv文件导入数据库,将表命名为peiking
选择编码20906(GB2312)
5.添加字段名:National(国家),NationalEnglish(国家英文),Winner(获奖选手), LargeProject(大项项目),SmallProject(小项项目),MedalType(奖牌类型),AwardTime(获奖日期)
二、Pycharm
1.打开Pycharm(注意社区版的不行哦),点击右侧的数据库
2.添加数据源选择MySQL
3.输入端口等信息,测试连接后确定
4.新建一个test.py测试数据库连接
import pymysql
db = pymysql.conner(host='127.0.0.1', user='root', password = '123456', database ='sys')
print(db)
5.在文件->设置->项目->Python编辑器左下角的+号导入需要的库:numpy,pandas,pyecharts,pymysql
6.点击peiking选择跳到查询数据台
use sys;#打开sys数据库
SELECT National as 国家, COUNT(*) as 次数 FROM peiking GROUP BY National
7.
mport pandas as pd
import numpy as np
import pymysql
from pyecharts import options as opts
from pyecharts.charts import Map, Page, Grid, Bar, Pie
db = pymysql.connect(host='127.0.0.1', user='root', password='123456',database='sys')
cursor = db.cursor() #创建游标
sql = "SELECT NationalEnglish as 国家,COUNT(*) as 奖牌总数 FROM sys.peiking GROUP BY NationalEnglish"
cursor.execute(sql) #游标执行sql语句
results = np.array(cursor.fetchall()) 将游标经过的结果获取到np数组中
print(results)#打印结果
注意:必须得用国家英文,不然在用Map的时候不显示
def map_one() -> Map:
world = (
Map(init_opts=opts.InitOpts(bg_color="#00589F&#