POJ--3641--快速幂运算模板,素数筛

//pow(x,n)%mod
typedef long long ll;
ll mod_pow(ll x,ll n,ll mod){//时间复杂度O(logn) 
	ll ans=1;
	while(n>0){
		if(n&1)
			ans=ans*x%mod;
			x=x*x%mod;
			n>>=1;
	}
	return ans;
} 

素数筛,但是在大多数时候不用,而是及时判断

const int MAX=10000010;
bool prime_8[MAX];
void prime(){
    for(int i=2;i<=MAX;i++)
        for(int j=2;j*j<=i;j++)
            if(i%j==0){
                prime_8[i]=true;//true表示不是素数//
                continue;                
        }
}
//在这之前:memset(prime,false,sizeof(prime));

题目:POJ3641 

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes

思路:以上两个模板

#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const ll  MAX=1000000000+1;
bool prime_8[MAX]; 
//素数筛 
bool prime(int p){
	for(int i=2;i<=sqrt(p);i++){
		if(p%i==0)
			return 0;
	}
	return 1;
		
} 
//pow(x,n)%mod
ll mod_pow(ll x,ll n,ll mod){//时间复杂度O(logn) 
	ll ans=1;
	while(n>0){
		if(n&1)
			ans=ans*x%mod;
			x=x*x%mod;
			n>>=1;
	}
	return ans;
} 
int main(){
	int p,a;
//	prime();//线性时间,但是还是消耗时间 ,改为及时判断 
	while(1){ 
		cin>>p>>a;//a^p=a(mod p)并且p不是素数 -----a^(p-1) MOD p=1
		if(p==0&&a==0)
			break;
		if(prime(p)==1){
			cout<<"no"<<endl;
		}
		else{
			if(mod_pow(a,p,p)==a%p)
				cout<<"yes"<<endl;
			else
				cout<<"no"<<endl;
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值