自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

在这篇了论文中,我们提出了一种估计单张图片深度信息的新方法:使用神经网络对深度进行递归。分为两个步骤:首先估计出场景的整体结构,然后使用局部信息进行优化。这个网络使用。3.1模型结构我们的网络由两个栈组成。如下图。一个粗尺度网络首先在全局上对场景深度进行预测。然后通过使用细尺度网络进行局部区域的优化。两个部分都使用了原图像进行输入。但是粗尺度网络的输出,是通过细尺寸网络作为附加

2016-06-30 08:11:20 3213 1

原创 Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields

贡献:    提出了一个用于深度估计的,基于CNN和CRF的深度卷积神经场模型。考虑到深度值连续性,概率密度函数中配分函数(the partition function 分割函数?)能够被分析计算,进而我们可以在没有近似值(approximations)的情况下,直接求解对数似然优化。在反向传播训练中,梯度可以被精确地计算。此外,由于存在相近的情形,预测一个新的图像深度而求解MAP问题是非常高

2016-06-29 17:52:39 2454

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除