递归二--递归的优化,DP

上课时给学生讲到递归实现的缺陷时,举过下面的例子:

使用递归方法来计算组合数:

       从m个不同元素中,任取n(n≤m)个元素并成一组,叫做从m个不同元素中取出n个元素的一个组合;从m个不同元素中取出n(n≤m)个元素的所有组合的个数,叫做从m个不同元素中取出n个元素的组合数。

公    式: C(m,n)=n!/((m-n)!*n!)(n≤m)

性    质:C(m,n)= C(m,m-n)                  --可以推导出--》 C(m,0) = C(m,m) = 1

               C(m,n)=C(m-1,n-1)+C(m-1,n)

请使用递归的方法来计算组合数。

使用递归的方法很简单,使用我们之前讲过的递归的原则:

// Divide and Conquer

int CombinationNumber(int m, int n)

{

// Part 1

if ( (n == 0)  || (m == n) )

return 1;

 

// Part 2

return CombinationNumber(m-1, n) + CombinationNumber(m-1, n-1);

}

重复运算1

重复运算2

如上图,当我们来计算C(6,4)时,我们需要计算C(5,3)和C(5,4),而计算C(5,3)又要计算C(4,2)和C(4,3),依次 类推。

我们发现这里有大量的重复预算。这也就是为什么递归在时间和空间(递归要开辟栈空间)上有大量的资源消耗。

 

那么问题来了,我们需要怎么来优化?

根据上一章所讲的内容,我们可以尝试用循环来优化递归。这里我们使用另一种方法,DP(Dynamical Programming),也就是动态规划的方法来优化。

我们考虑:这里有很多中间结果被反复计算,从而引起了时间和空间上(递归需要分配栈空间)的浪费,

所以我们可以考虑将计算的中间结果记录在某处,然后当再次需要这个结果时,从已经计算的结果中来查找,从而得到结果,

这样在时间上可以节省大量的成本,当然,空间上则需要一定辅助空间。

按照这个思路,我们尝试用一张大的表来有序的保存中间结果。

如下图,我们让行对应m,让列对应n,这样我们根据C(m,0) = C(m,m) = 1,可以将下标中

的黑色区域填上初始值1;

然后根据性质:C(i,j)=C(i-1,j-1)+C(i-1,j)

我们找到了计算出C(i,j)的方法,所以在计算C(5,2)

时可以使用C(4,1)+C(4,2)=4+6=10

依次类推:

我们可以计算出表中的C(m,n);

 

于是,有了下面的算法2(Dynamical Programming)实现:

import math

import time

def combinationNum2(m,n):

           #arr = [[0]*m]*n  # row m, coloumn n

           t1 = time.time()

           myList = [([0] * (n+1)) for i in range(m+1)]

           #print(myList)

           for i in range(0, m-n+1):

                      myList[i][0] = 1

           for i in range(0,n+1):

                      myList[i][i] = 1

           #print(myList)

           for j in range(1, n+1):

                      for i in range(j+1, m-n+j+1):

                                 myList[i][j] = myList[i-1][j-1]+myList[i-1][j]

           #print(myList)

           print("combinationNum2 costed %f seconds"%(time.time()-t1))

           return myList[m][n]

           #return combinationNum(m-1,n-1)+ combinationNum(m-1,n)

这里我们就是一个使用DP的思想来优化递归的案例。

 

# 当然,我们可以从数学公式的角度来解决这个问题,代码如下:

def combinationNum3(m,n):

           t1 = time.time()

           result = math.factorial(m)/(math.factorial(m-n)*math.factorial(n))

           print("combinationNum3 costed %f seconds"%(time.time()-t1))

           return result

# 测试代码:

m = int(raw_input("Please input m:"))

n = int(raw_input("Please input n:"))

print(combinationNum2(m, n))

print(combinationNum3(m, n))

 

对Python算法,爬虫和数据分析感兴趣的朋友可以加入QQ群:748905525,一起学习讨论

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (dp) $O(nm)$ 对于这道题,我们可以使用DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值