记我的一次失败的讲课——函数概念的教学

我参加工作第一年,担任高中一年级的代数老师。那么刚刚大学毕业的我呢,当时认为凭自己大学四年学的这些数学知识,教中学的话,那是绰绰有余的。其实呢,有一句老话叫做无知者无畏。其实在以后的工作当中啊,遇到了一个又一个的大坑。所以让我慢慢的意识到,这个教学本身也是一门很深的学问。

百度百科
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

那么刚刚参加工作的我,在讲函数这个概念的时候,其实我的能力,也就是比着课本儿把这个概念呢,念上两遍,然后呢,再提问学生,看学生能不能找原样把它背下来。一向反对死记硬背的我,那么等到我当老师的时候,其实我发现我也是会让学生死记硬背。

实际上呢,我也算是比较幸运,因为在我刚参加工作的时候呢,学校呢,就指派我的恩师陈涛老师来指导我的教学工作。当时那节课下了课以后,我找到陈涛老师,我说陈老师啊,我说我这节课讲的很失败,我发现我讲完以后学生们都没听懂。

然后陈老师就问你,这你是怎么讲的呢?你给我讲一遍,然后呢,我就一五一十,把我那个讲课过程又再现了一遍。

那么陈涛老师听了以后哈哈大笑,说,没关系的,新老师吗,一般呢,一开始都会犯这样的错误,那下面我们就分析一下这节课到底应该怎么讲。

这个函数的概念,学生们实际上在初中的时候就已经学过了,那么在高中呢,会从这个集合与映射的这个角度重新再定义一遍,给出一个新的定义啊,也是一个比较现代的定义。

那么既然上节课我们已经讲了映射的概念,所以这节课一开始啊,我们就可以在黑板上呢,这个写一组练习题,我们画出呢,这个一组映射来这个,我们画出一组这个对应关系,然后呢,让学生来判断哪些对应关系是映射,哪些不是?

在删除掉不是映射的那些对应关系后,那我们在接下来分析就是说哪些映射呢?是从数集到数据的映射。

那这样的话,最后剩下的映射就很少了,对吧,那然后最后一步的话,我们再把这个看一下哪些映射的象集里边的所有的这个元素都有原象,然后呢,把这些挑出来作为重点做上标记,那然后呢,我们会总结说呢,如果一个映射呢,它是从数据到数据的映射,然后呢,他的象集当中的每个元素呢,都有原像啊,就是我们标的这些映射。那么我们下一步重点呢,就是关心这一类的映射,所以呢,数学体系里面把这一类的映射定义为函数。这样呢,就自然有这种具体的例子当中呢,我们总结出了函数的概念。

我觉得陈涛老师呢,给我上的这一节课让我终身受益,所以呢,我在以后的工作当中呢,我讲课也好,讲PPT也好,我都尽量避免去抽象地给听众们去讲这些概念,这些方法,而是呢,我会搜集大量的实例,这个让听众们跟着这个根据,跟着跟着这些实力的,通过这些实例来理解我要讲的这些比较深的一些内容。

所以呢,一堂比较好的课程呢,他应该有丰富的实例,应该有一个引人入胜的一个故事,还应该呢,能够去掀起一个高潮,这个让大家思维受到启发,能够感到脑洞大开,这样的一节课才是有价值、有意义的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许野平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值