1、数据科学中的机器学习基础和进展
报告中对数据科学从两个角度进行了定义,摘录如下:
数据科学(高层定义):数据科学关于数据的科学和研究
数据科学(学科定义)是一个融合了统计学、信息学、计算、通讯、管理以及社会学的新的交叉学科,其研究主体为数据及其环境,其目标是将数据转化为洞察力以及决策,采用的方法论以及思路是将数据转化为知识进而转化为智慧。
这个定义跟我想的有点不一样,例如:牵涉到数学相关的内容不应该仅仅是统计学,还应该有矩阵论、凸优化等等。感觉通讯与管理算是数据科学的应用领域,为什么也放在数据科学的定义中?
数据科学最终的产物是数据产品,大开脑洞,其定义如下:
数据产品:是由数据产生的可交付或者是由数据使能或驱动的产物。数据产品可以是一种发现、预测、服务、推荐、决策洞察力、见解、模型、模式、范式、工具或系统。最终极数据产品的价值是知识、智力、智慧以及决策。
1.1 数据科学与大数据
数据科学是大数据研究发展的重要工具和手段,为大数据分析提供了强大的保障,两者相互结合,可以创造出巨大的价值。
1.2 数据科学与机器学习
机器学习约等于数据科学。机器学习算法主要目标是对数据进行分析,得出规律,利用规律对未知的数据进行预测。机器学习算法的目标与数据科学的目标在本质上是一致的。
1.3 数据科学研究的主要问题
1)大数据中的数据表示与表示学习技术:数据表示是数据分析任务的基础,好的数据特征表示可以使得整个分析任务获得更好的性能。
2)高维数据学习。目前对高维数据的学习,主要可以考虑采用特征选择、维度约简、数据采样
3)多源异构数据学习。大数据不仅仅是体量大,还存在复杂的结构。多源异构属于复杂数据中的一种。随着数据采集设备的发展,通常一个目标存在多种表示,即构成目标的多模态(多视图)表示。
4)复杂结构数据学习。在很多任务中,数据存在天然的结构信息,如何从数据中学出或恢复出这样的结构信息是学习关注的重点。
5)交互式数据学习。交互式大数据是由多个行为实体共同作用产生的。
6)非独立同分布学习。指任何面向非独立同分布的数据学习方法。