本文转自:http://www.shareditor.com/blogshow/?blogId=58
现实世界中多数特征都不是连续变量,比如分类、文字、图像等,为了对非连续变量做特征表述,需要对这些特征做数学化表述,因此就用到了特征提取 (特征数字化)
分类变量的特征提取
比如城市作为一个特征,那么就是一系列散列的城市标记,这类特征我们用二进制编码来表示,是这个城市为1,不是这个城市为0
比如有三个城市:北京、天津、上海,我们用scikit-learn的DictVector做特征提取,如下:
#sklearn 只能处理数字化的特征
from sklearn.feature_extraction import DictVectorizer
onehot_encoder = DictVectorizer()
instances = [{'city':'背景'},{'city':'天津'},{'city':'上海'}]#这个可以使用相同的key值city是因为它们属于不同的字典中
print(onehot_encoder.fit_transform(instances).toarray())
输出结果为:
[[ 0. 0. 1.]
[ 0. 1. 0.]
[ 1. 0. 0.]]
[ 0. 1. 0.]
[ 1. 0. 0.]]
不同编码表示不同城市。
文字特征提取
第一种情况用词库表示法,如下:
from sklearn.feature_extraction.text import CountVectorizer
corpus = [
'UNC played Duke in basketball',
'Duke lost the basketball game'
]
vectorizer = CountVectorizer()
print(vectorizer.fit_transform(corpus).todense())
print(vectorizer.vocabulary_)
执行后:
[[1 1 0 1 0 1 0 1]
[1 1 1 0 1 0 1 0]]
{'unc': 7, 'played': 5, 'duke': 1, 'in': 3, 'basketball': 0, 'lost': 4, 'the': 6, 'game': 2}
[1 1 1 0 1 0 1 0]]
{'unc': 7, 'played': 5, 'duke': 1, 'in': 3, 'basketball': 0, 'lost': 4, 'the': 6, 'game': 2}
数值为1表示词表中的这个词出现,为0表示未出现
词表中的数值表示单词的坐标位置
什么意思呢? 通俗的将就是将上面两个句子 拆分,去重,从0到最后一个编号,打乱,执行完这个操作对应的{'unc': 7, 'played': 5, 'duke': 1, 'in': 3, 'basketball': 0, 'lost': 4, 'the': 6, 'game': 2},然后两个句子再和打乱后的进行对比,句子中有这个词就为1,没有就为0.数字化的向量长度应该是与拆分去重后的长度一致的。第二种情况TF-IDF表示词的重要性,如下:
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
'The dog ate a sandwich and I ate a sandwich',
'The wizard transfigured a sandwich'
]
vectorizer = TfidfVectorizer(stop_words='english')
print(vectorizer.fit_transform(corpus).todense())
print(vectorizer.vocabulary_)
输出结果为:
[[ 0.75458397 0.37729199 0.53689271 0. 0. ]
[ 0. 0. 0.44943642 0.6316672 0.6316672 ]]
{'dog': 1, 'ate': 0, 'sandwich': 2, 'wizard': 4, 'transfigured': 3}
[ 0. 0. 0.44943642 0.6316672 0.6316672 ]]
{'dog': 1, 'ate': 0, 'sandwich': 2, 'wizard': 4, 'transfigured': 3}
值最高的是第一个句子中的ate,因为它在这一个句子里出现了两次
值最低的自然是本句子未出现的单词
(这里是有点疑问的:直接去除了I and a 这样的词?? 第一个句子中sandwich也出现了两次啊,为什么ate最高呢??)数据标准化
数据标准化就是把数据转成均值为0,方差为1的。比如对如下矩阵做标准化:
from sklearn import preprocessing
import numpy as np
X = np.array([
[0.,0.,5.,13.,9.,1.],
[0.,0.,13.,15.,10.,15.],
[0.,3.,15.,2.,0.,11.]
])
print(preprocessing.scale(X))
输出结果为:
[[ 0. -0.70710678 -1.38873015 0.52489066 0.59299945 -1.35873244]
[ 0. -0.70710678 0.46291005 0.87481777 0.81537425 1.01904933]
[ 0. 1.41421356 0.9258201 -1.39970842 -1.4083737 0.33968311]]
[ 0. -0.70710678 0.46291005 0.87481777 0.81537425 1.01904933]
[ 0. 1.41421356 0.9258201 -1.39970842 -1.4083737 0.33968311]]