自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(53)
  • 收藏
  • 关注

原创 YOLOv26家具物品检测实战:基于Python和OpenCV实现家具识别系统

本文介绍了基于YOLOv26的家具物品检测系统实现。YOLOv26作为目标检测领域的最新突破,通过端到端设计消除了NMS步骤,显著提升了推理速度。文章详细解析了YOLOv26的核心架构创新,包括MuSGD优化器、无NMS推理等关键技术,并展示了不同模型变体的性能指标。实战部分提供了从环境配置、数据集准备到模型训练和推理的完整流程,特别强调了数据质量和模型选择对家具识别效果的影响。该系统在保持高精度的同时实现了实时检测,为智能家居应用提供了可靠的技术方案。

2026-01-28 10:33:22 679

原创 基于YOLOv26的水果品质分类系统详解与代码实现

本文详细介绍了基于YOLOv26的水果品质分类系统设计与实现。系统采用改进的YOLOv26模型,结合ProgLoss+STAL损失函数和MuSGD优化器,显著提升了水果检测精度。系统包含数据采集、预处理、检测和分类决策四个模块,通过多级分类策略实现对水果种类、新鲜度和缺陷的精准识别。实验表明,优化后的模型在50,000张水果图像数据集上达到93.8%的mAP50,推理速度满足实时性要求。系统支持云端和边缘两种部署方案,可广泛应用于水果品质检测场景。

2026-01-28 09:50:07 623

原创 食品废料纸质载体目标检测与分类_YOLOv26应用

本文介绍了基于YOLOv26的食品废料纸质载体目标检测与分类方法。通过构建包含5000张图像的数据集,涵盖10类食品废料纸质载体,采用7:2:1的比例划分训练集、验证集和测试集。YOLOv26模型采用端到端无NMS推理、MuSGD优化器等创新技术,在保持高精度的同时提升速度。实验结果显示,优化后的模型mAP@0.5达到89.7%,比YOLOv5提升5.5个百分点,推理速度达52FPS,比Faster R-CNN快4倍以上,适用于工业环境实时部署。研究为食品废料识别与分类提供了高效解决方案。

2026-01-28 09:14:39 688

原创 小麦赤霉病健康与感染状态分割识别_YOLOv26模型实现与应用

本文介绍了基于YOLOv26模型的小麦赤霉病健康与感染状态分割识别技术。YOLOv26在传统YOLO基础上进行了多项创新,采用端到端设计消除NMS后处理步骤,并引入ProgLoss+STAL损失函数提升小目标分割精度。研究详细阐述了数据集构建、数据增强策略及模型训练优化过程,通过渐进式学习策略和超参数调优实现高性能分割。实验结果表明,YOLOv26-seg相比YOLOv8-seg在mAP和IoU等指标上均有显著提升,同时推理速度提高11.7%。该技术可部署于移动设备,为田间实时病害监测提供解决方案。

2026-01-27 19:26:51 511

原创 YOLOv26太空探索目标识别与分类【地球景观、国际空间站模块及UFO检测全攻略】_包含数据集与代码实现

摘要: 本文介绍了YOLOv26在太空探索目标识别中的应用,涵盖地球景观监测、国际空间站模块检测及UFO分析三大场景。YOLOv26凭借高精度、轻量化和实时性优势,可识别火山、地形特征(准确率超90%)、空间站损坏(代码示例展示检测流程),并分类不明飞行物(含卫星、碎片等)。文章提供了数据集构建指南(地球/ISS/UFO图像标注)和模型训练代码(基于YOLOv26n预训练),支持1024分辨率图像处理与MuSGD优化器调参,为太空图像分析提供高效解决方案。🚀

2026-01-27 18:57:35 589

原创 YOLOv26改进:挖掘机铲斗状态识别模型优化与应用

本文提出基于YOLOv26改进的挖掘机铲斗状态识别模型,针对工程机械自动化需求进行优化。通过端到端无NMS推理机制、DFL移除和ProgLoss+STAL损失函数等创新点,显著提升检测效率与精度。数据集构建包含5000张多样化工况图像,经预处理和增强处理后,模型微调达到92.3% mAP@0.5。部署采用TensorRT加速和量化技术,在Jetson TX2平台实现25FPS实时检测,推理速度提升3倍,为智能施工提供可靠技术支持。

2026-01-27 18:20:07 607

原创 大肠杆菌检测与识别_YOLOv26模型实践与应用

本文提出了一种基于改进YOLOv26的大肠杆菌智能识别系统。通过构建包含965张标准化图像的数据集(含不同培养条件、培养基和放大倍率),采用YOLOv8格式标注并进行数据增强。系统实现了大肠杆菌的快速准确检测,为食品安全和环境监测提供了技术支持。数据集经预处理后统一为640×640像素,并应用了翻转和旋转等增强方法,划分为训练集、验证集和测试集,适用于微生物检测和医学图像分析等领域。

2026-01-27 09:33:18 375

原创 【深度学习应用】YOLOv26实现榴莲叶片健康状态检测:识别健康、灼伤与锈斑叶片

本文提出了一种基于YOLOv26深度学习的榴莲叶片健康状态检测方法。研究构建了包含1500张图像的数据集,涵盖健康、灼伤和锈斑三类叶片状态。针对农业场景特点,改进了YOLOv26模型结构,引入GhostC3模块、CBAM注意力机制和BiFPN特征融合网络,优化了模型在小目标检测上的性能。实验结果表明,改进模型在测试集上达到89.8%的mAP@0.5,优于其他主流检测算法,并在边缘设备上实现15FPS的实时检测速度。该方法为榴莲种植的智能化管理提供了有效技术方案。

2026-01-27 09:17:33 596

原创 环状缺陷检测与识别_YOLOv26_目标检测改进方案

本文提出了一种基于改进YOLOv26的工厂环状缺陷检测方法。针对工业环状产品(如轴承、齿轮)缺陷检测面临的挑战,包括结构复杂性、环境干扰和实时性要求,YOLOv26通过端到端无NMS设计、移除DFL模块以及引入ProgLoss+STAL等创新,显著提升了检测效率。实验表明,改进后的模型在工业环状产品数据集上达到0.895的mAP@0.5,CPU推理时间仅31.6ms,相比YOLOv5精度提升5.3%,速度提升25%,更适用于工业现场部署。该方法为智能制造提供了高效的缺陷检测解决方案。

2026-01-26 15:44:04 659

原创 基于YOLO11-CSP-EDLAN的软夹持器夹持状态检测方法研究

本文提出了一种改进的YOLO11-CSP-EDLAN模型用于软夹持器夹持状态检测。通过引入CSP结构增强特征融合,设计EDLAN模块优化注意力机制,并改进损失函数,模型在自建数据集上达到96.3%的mAP和45FPS的实时性能。实验表明,该方法在复杂光照、遮挡等场景下仍保持高精度,已成功部署于工业生产线,使夹持准确率提升至96.3%,产品不良率下降25%。未来将扩展数据集并探索多模态融合技术以进一步提升性能。

2026-01-22 11:49:04 598

原创 基于Cascade R-CNN和ResNeXt的足球场多目标检测识别:足球、球员与裁判的精确识别

本文提出了一种基于Cascade R-CNN和ResNeXt的足球场多目标检测方法,旨在精确识别足球、球员和裁判三类目标。研究采用Soccer Players数据集(163张图像),通过数据增强和预处理提升模型泛化能力。实验表明,该方法在mAP@0.5和mAP@0.5:0.95指标上分别达到89.2%和52.6%,优于Faster R-CNN、SSD等对比算法。消融实验验证了Cascade R-CNN和ResNeXt-101的有效组合。该方法可应用于比赛分析、裁判辅助等场景,未来可优化实时性并扩展至3D检测

2026-01-22 11:12:36 564

原创 蚕茧密度分类与识别:基于改进vfnet_x101模型的实现

本文提出了一种基于改进VFNet_x101模型的蚕茧密度分类与识别方法。针对传统方法在小目标检测和类别不平衡问题上的不足,研究引入多尺度DCNv2优化和改进Varifocal损失函数,显著提升了模型性能。实验结果表明,改进后的模型mAP达到85.7%,较原模型提升7.4个百分点,小目标检测准确率提升8.6%。实际应用中,该系统在丝绸生产线上实现了92.3%的分类准确率,大幅提高了生产效率。文章还公开了项目源码和数据集,为相关研究提供了实用参考。

2026-01-22 10:00:54 677

原创 手语字母数字识别_YOLO11-C3k2-WTConv模型实现详解

手语字母数字识别模型实现 摘要 本文提出了一种基于改进YOLO11的手语字母数字识别系统,通过引入C3k2和WTConv模块显著提升了识别性能。系统采用2568张图像的数据集,涵盖36个类别(A-Z和0-9),经过数据增强和预处理后,模型在测试集上达到93.8%的mAP@0.5,推理速度仅7.9ms。优化后的模型可部署至移动设备,为听障人士提供实时翻译服务。实验表明,该模型在准确率和速度上均优于传统YOLO版本,具有实际应用价值。 关键改进点 创新架构:C3k2模块通过k-means优化通道分组,降低30%

2026-01-21 21:59:19 579

原创 【深度学习】基于Sparse-RCNN的多类别蘑菇物种识别与检测系统_2

本文提出了一种基于Sparse-RCNN深度学习的多类别蘑菇物种识别与检测系统。该系统通过构建包含20种常见蘑菇、约5000张图像的数据集,采用Sparse-RCNN算法进行目标检测,实现了平均mAP达0.93以上的高精度识别。系统采用两阶段训练策略和混合精度训练优化模型性能,并开发了支持单图、批量和实时视频识别的用户界面。实验结果表明,该系统在野外蘑菇识别和食品安全检测等场景具有良好应用价值。未来将扩展蘑菇类别、优化实时性能,推动该技术在生态保护和食品安全领域的应用。

2026-01-21 21:36:26 615

原创 轮胎识别号码检测▸基于YOLO11-ContextGuideFPN的高精度检测模型实现与部署

本文提出了一种基于YOLO11-ContextGuideFPN的高精度轮胎识别号码检测方法。通过创新的ContextGuideFPN网络架构,结合上下文引导机制和特征金字塔融合,有效提升了小目标检测能力。针对轮胎识别任务,设计了多任务损失函数和针对性的数据增强策略,采用分阶段训练和余弦退火学习率调度优化模型性能。实验表明,该方法在复杂环境下仍能保持高精度识别,并通过模型量化技术实现了边缘设备的高效部署,为智能交通和车辆管理提供了可靠的技术支持。

2026-01-20 18:28:07 612

原创 改进YOLOv5结合SwinTransformer实现青香蕉手指部分自动识别与分类

本文提出了一种改进YOLOv5结合SwinTransformer的青香蕉手指部分自动识别方法。通过构建包含5000张标注图像的数据集,在YOLOv5主干网络中引入SwinTransformer增强特征提取能力,实现mAP达89.6%的检测精度。实验表明该方法能有效识别重叠香蕉手指部分,具有农业智能化应用前景。研究为农产品品质检测提供了新思路,未来可进一步优化模型轻量化部署。

2026-01-20 15:36:16 582

原创 金属检测新突破:YOLO11-DBBNCSPELAN如何精准识别螺栓与金属废料混合物?

本文提出了一种改进的YOLO11-DBBNCSPELAN模型,用于解决工业场景中螺栓与金属废料混合物的精准识别问题。该模型通过动态双分支注意力网络(DBBN)实现自适应特征提取,结合交叉尺度特征融合网络(CSFN)和空间位置感知增强模块(SPE),显著提升了检测精度。实验表明,模型在保持95%以上检测精度的同时,参数量减少35%,推理速度提升40%。实际应用中,该技术使金属分拣效率提升8倍,准确率达96.5%,具有重要的工业应用价值。

2026-01-20 14:09:11 858

原创 结膜区域检测与分类:穹窿部、睑结膜和睑板部结膜识别定位技术研究

本文提出了一种基于深度学习的结膜区域自动检测与分类方法,实现了对穹窿部、睑结膜和睑板部结膜的精确识别定位。通过改进的ResNet50骨干网络、区域特征增强模块和多尺度融合技术,结合针对性的数据增强策略和形状约束损失函数,显著提升了分割精度。实验结果表明,该方法在各项指标上优于传统方法,Dice系数达92.3%,医生满意度超过85%。开发的辅助诊断系统可集成到眼科检查设备中,为结膜疾病诊断提供客观依据。未来将重点解决图像质量差异等挑战,进一步提升临床适用性。

2026-01-16 16:39:43 511

原创 YOLO11-C3k2-EMA改进:挖掘机目标检测模型的优化与实现

本文提出了一种基于YOLO11框架的改进挖掘机目标检测模型YOLO11-C3k2-EMA。针对挖掘机检测面临的尺度变化大、形态多样和环境复杂等挑战,模型通过引入C3k2模块实现多尺度特征融合,并采用EMA策略提升泛化能力。实验结果表明,改进后的模型在保持实时性的同时,mAP@0.5达到0.912,优于原始YOLO11和其他主流检测算法。该模型可有效应用于工程机械智能监控与管理,为工业自动化提供技术支持。

2026-01-16 14:56:09 641

原创 基于改进YOLO11-ASF-P2的多旋翼无人机检测识别系统_红外航拍目标检测算法优化_1

YOLO11-ASF-P2是一种基于YOLOv11的目标检测算法,结合了自适应特征融合(ASF)和P2尺度采样策略,特别适合多尺度目标检测任务。从上图可以看出,YOLO11-ASF-P2采用了多尺度特征提取网络,能够有效捕捉不同尺度下的目标特征。与传统的YOLO系列算法相比,YOLO11-ASF-P2在保持检测速度的同时,显著提升了小目标检测的准确率。本文介绍了一种基于改进YOLO11-ASF-P2的红外航拍目标检测算法优化方案,专门用于多旋翼无人机的检测识别系统。

2026-01-16 11:43:24 1170

原创 钻井作业场景下设备与产品识别与检测:基于YOLO11-SRFD的目标检测系统实现与应用

本文介绍了一种基于YOLO11-SRFD的钻井设备检测系统,针对复杂钻井场景中的目标检测挑战进行了优化。系统采用改进的空间感知特征融合和多尺度特征增强技术,显著提升了小目标检测能力。实验表明,该模型在4000张钻井设备图像数据集上表现优异,特别是在mAP和FPS指标上优于主流算法。系统已成功部署于多个钻井现场,实现了设备实时检测与监控,为钻井作业安全与效率提升提供了有效解决方案。

2026-01-16 10:03:24 657

原创 起重机类型识别与检测:使用YOLO11-C3k2-AP模型提升目标检测精度_1

本文介绍了一种基于改进YOLO模型的起重机检测系统。该系统采用YOLO11-C3k2-AP模型,通过C3k2模块和注意力机制优化起重机检测性能。研究构建了包含5类起重机的10,000张图像数据集,采用多种数据增强技术提升模型泛化能力。实验结果表明,该模型在测试集上达到92.3%的mAP@0.5,优于主流YOLO版本,推理速度8.2ms满足实时需求。系统实现了Web端可视化展示,支持检测结果对比、统计分析和数据导出功能,为建筑工地等场景提供自动化起重机识别解决方案。

2026-01-14 17:59:26 495

原创 蟹壳图像分割改进YOLOv10n-HAFB-2模型训练与应用

本文提出了一种改进的YOLOv10n-HAFB-2模型用于蟹壳图像分割。针对海鲜加工行业需求,该模型在YOLOv10n基础上引入HAFB-2模块(分层注意力特征融合)和边界细化模块,有效提升了复杂纹理蟹壳的分割精度。通过5000张多角度蟹壳图像数据集训练,采用渐进式训练策略和Focal Loss优化,模型在保持30FPS实时性能的同时,mIoU达到0.82,较基线提升15%。创新性地结合多尺度特征融合和轻量化设计,为海鲜自动化加工提供了高效解决方案。

2026-01-14 16:27:10 465

原创 【计算机视觉】YOLOv10n-SPPF-LSKA托盘识别与检测

本文介绍了基于YOLOv10n改进的托盘检测模型YOLOv10n-SPPF-LSKA,该模型融合了SPPF空间金字塔池化模块和LSKA大核注意力机制,专门针对物流仓储场景中的托盘检测任务进行优化。文章详细解析了模型架构,包括SPPF模块的多尺度特征融合能力和LSKA模块的长距离特征捕获优势,并阐述了针对托盘检测的数据集构建与增强策略。实验表明,该模型在保持实时检测速度的同时,显著提升了遮挡托盘和小目标的检测性能,适用于复杂的仓储环境。

2026-01-14 14:59:33 642

原创 基于YOLOv5-GDFPN的汽车漆面缺陷检测与识别技术详解_1

本文详细介绍了基于YOLOv5-GDFPN的汽车漆面缺陷检测技术。针对传统人工检测效率低和YOLOv5模型在漆面缺陷检测中的局限性,提出了一种改进的GDFPN结构,通过聚集-分发机制和动态采样技术增强多尺度特征融合能力。核心创新包括CSPStage模块实现高效特征融合和DySample动态采样机制提升小缺陷检测精度。实验结果显示,改进后的模型在平均精度(mAP)上显著提升至0.918,小缺陷召回率达到0.892,同时保持42FPS的实时性能。实际应用案例表明,该系统在汽车生产线中缺陷检出率达95%以上,效率

2026-01-14 13:29:22 684

原创 基于改进YOLO11的纹身检测系统实现与部署教程

本文提出了一种基于改进YOLO11的纹身检测系统,通过引入多尺度特征融合模块和空间-通道注意力机制,显著提升了模型性能。构建了包含10,000张标注图像的数据集,采用多种数据增强策略增强泛化能力。实验表明,改进后的模型mAP@0.5达到92.7%,比原始YOLO11提高2.6个百分点,同时保持60FPS的实时检测速度。系统采用客户端-服务器架构部署,支持实时视频流处理,可广泛应用于安全监控、身份识别等领域。

2026-01-14 11:53:44 590

原创 基于YOLO11与HSFPN的矿渣检测识别技术研究

本文提出了一种基于YOLO11与改进HSFPN的矿渣检测识别技术,通过改进特征金字塔网络(HSFPN)结构,增强了对多尺度矿渣特征的表示能力。改进的HSFPN融合了多尺度特征、通道注意力机制和优化的跨层连接,显著提升了小目标检测精度。实验结果表明,该方法在mAP@0.5和mAP@0.5:0.95指标上分别达到0.893和0.724,较基线模型提升明显,推理速度仍满足实时需求。该技术可广泛应用于冶金、建材等工业领域的自动化检测,具有重要的推广价值。未来研究将进一步优化模型轻量化和泛化能力。

2026-01-10 11:58:00 851

原创 木材缺陷检测与分类系统_基于FreeAnchor R50 FPN模型实现

本文提出了一种基于FreeAnchor R50 FPN模型的木材缺陷检测与分类系统。该系统通过动态锚框生成机制有效识别裂纹、节疤、虫洞等常见木材缺陷。实验结果表明,该模型在构建的多样化数据集上表现优异,相比传统方法显著提高了检测精度。文章详细介绍了数据集构建、模型架构设计、动态锚框生成机制及训练优化策略,为木材加工行业的自动化质检提供了有效解决方案。

2026-01-03 11:13:37 981

原创 YOLOV8与CGAFusion融合实现建筑工人头部安全装备检测

YOLOV8与CGAFusion融合的建筑安全装备检测方法 本文提出了一种创新的YOLOV8与CGAFusion融合方法,用于建筑工人头部安全装备检测。该方法结合YOLOV8的高效目标检测能力和CGAFusion的多尺度特征融合优势,在复杂建筑场景下实现了96.7%的检测准确率。 技术亮点: 采用YOLOV8的C2f模块和SPPF优化结构 创新CGAFusion模块实现跨尺度特征融合 优化损失函数解决数据不平衡问题 实验结果表明,该方法在自建数据集上显著优于主流检测模型,mAP达到96.7%,推理速度72.

2026-01-03 10:39:37 1110

原创 基于YOLOv8-WaveletPool的妇科MRI图像中早期胚胎发育阶段自动检测与分类

本文提出了一种基于YOLOv8-WaveletPool的妇科MRI图像中早期胚胎发育阶段自动检测与分类方法。通过在YOLOv8骨干网络中引入WaveletPool模块,增强多尺度特征提取能力,显著提高了检测精度。实验结果表明,改进后的WP-YOLOv8在mAP@0.5指标上比原始模型提升6.1%,特别在6W孕周类别上提升最明显(6.9%)。该方法在保持较高推理速度(14.2ms)的同时,有效解决了医学影像分析中的特征提取和类别不平衡问题,为临床早期胚胎发育监测提供了更准确的技术支持。

2026-01-02 20:30:11 769

原创 YOLO11-AIFI实现电缆护套故障检测:改进YOLO系列教你如何优化模型提升检测精度_2

本文提出了一种基于AIFI模块改进的YOLOv11算法(YOLO11-AIFI)用于电缆护套故障检测。针对传统YOLO算法在检测微小故障、低对比度故障时的局限性,AIFI模块通过多尺度特征提取、注意力机制和自适应特征融合三个关键步骤,有效提升了模型对电缆护套故障特征的感知能力。YOLO11-AIFI模型架构包含骨干网络、颈部网络和检测头三部分,在骨干网络和颈部网络中引入AIFI模块增强特征表达能力。实验结果表明,该方法在电缆护套故障检测任务中具有更高的检测精度和鲁棒性,为工业视觉检测提供了新的技术思路。

2026-01-02 20:12:36 534

原创 YOLOv8-HGNetV2海洋垃圾检测与识别系统__深度学习目标检测应用与实现

本文介绍了一种基于YOLOv8-HGNetV2的海洋垃圾检测系统,该系统结合深度学习和轻量化网络结构,可高效识别塑料瓶、塑料袋等10类海洋垃圾。系统采用模块化设计,包含数据采集、模型训练、部署和可视化四个模块,使用8000张图像构建数据集并优化训练策略。实验表明,该系统在检测精度和实时性方面表现优异,可部署于无人机等边缘设备,为海洋环境保护提供技术支持。

2026-01-01 17:21:37 1025

原创 多类别水果图像检测与识别:YOLO11-MSBlock分割模型实现

本文提出了一种基于YOLO11-MSBlock的多类别水果图像检测与识别方法。该方法采用改进的YOLO11模型,创新性地引入多尺度特征融合模块(MSBlock)来应对水果尺寸变化大的特点。通过精心设计的数据增强策略和预处理流程,构建了包含10种水果的高质量数据集。实验采用混合精度训练和余弦退火学习率调度等优化策略,在NVIDIA RTX 3090硬件环境下实现了高效训练。该方法能准确识别苹果、香蕉、葡萄等多种水果,为智能农业和零售领域的自动化应用提供了有效解决方案。

2026-01-01 16:39:33 1172

原创 YOLO13-C3k2-RFCBAMConv:基于改进卷积的显卡型号识别与分类技术详解

本文提出了一种改进的YOLO13-C3k2-RFCBAMConv模型用于显卡型号识别。该模型在YOLOv3基础上引入C3k2模块扩大感受野,结合RFCBAMConv注意力机制增强特征提取,并改进FPN结构实现多尺度特征融合。实验表明,该模型在测试集上达到92.3%的mAP,比YOLOv5提升5.7个百分点。创新点包括自适应NMS策略、分层分类方法以及针对显卡形状优化的卷积结构,有效提升了小样本和相似型号的识别准确率。

2025-12-30 12:20:46 938

原创 YOLOv9c改进:挖掘机检测与识别_1

挖掘机检测与识别系统:基于YOLOv9c的改进实现 本文提出了一种基于YOLOv9c的挖掘机检测与识别系统,针对工业场景中的工程机械检测需求进行了多项改进。系统核心创新包括: 模型改进: 引入双注意力机制(CBAM模块)提升特征提取能力 设计多尺度特征融合模块应对挖掘机尺度变化 采用自适应加权focal loss解决样本不平衡问题 系统实现: 基于PyQt6构建桌面应用系统,采用MVC设计模式 实现用户管理、模型训练、实时检测等功能模块 使用SQLite数据库存储检测结果和用户信息 实验验证: 在excav

2025-12-30 11:50:39 1079

原创 基于YOLOv8-SPDConv的水果品质检测与分类识别

本文提出了一种基于YOLOv8-SPDConv的水果品质检测与分类识别方法。通过引入SPDConv空间深度卷积模块,有效提升了模型对小尺寸水果的检测能力。实验结果表明,该方法在自建数据集上达到91.2%的mAP@0.5,相比基准模型提升4.1个百分点。系统可应用于果园分拣、超市检测等场景,实现高效准确的水果品质自动化评估。消融实验验证了SPDConv模块的关键作用,为小目标检测任务提供了有效解决方案。

2025-12-29 09:28:08 973

原创 基于YOLOv10n-LSCD-LQE的糖尿病视网膜病变分级检测模型实现与优化

本文提出了一种基于YOLOv10n-LSCD-LQE架构的糖尿病视网膜病变自动分级检测模型。该模型结合局部空间特征编码器(LSCD)和轻量量化注意力机制(LQE),有效识别视网膜病变特征。通过多尺度特征融合和量化压缩技术,在保持高精度的同时显著提升推理速度。采用加权交叉熵损失函数解决类别不平衡问题,并结合余弦退火学习率等优化策略。实验结果表明,该模型在IDRiD数据集上实现了92.3%的准确率,推理速度较传统方法提高3倍,适合在医疗设备上部署,为糖尿病视网膜病变的早期筛查提供高效辅助诊断方案。

2025-12-29 08:39:44 740

原创 基于VFNet-X101的人体姿态与武器携带行为检测系统研究

本研究基于VFNet-X101模型,构建了一个高效、准确的人体姿态与武器携带行为检测系统。通过精心设计的硬件配置、全面的数据集构建、优化的算法实现和友好的用户界面,系统能够在各种复杂环境下稳定运行,为安防监控提供了强有力的技术支持。😎引入更先进的Transformer架构,提升对复杂场景的理解能力探索轻量化模型部署方案,使系统能够在更多边缘设备上运行结合多模态数据(如红外、毫米波雷达),提高全天候检测能力开发更智能的预警机制,实现从"检测"到"预警"的跨越。

2025-12-28 21:03:53 905

原创 【深度学习实战】从零开始实现变压器表计部件识别-基于YOLO11-C3k2-FasterSFSC模型

本文提出了一种基于改进YOLO11模型的变压器表计部件识别方法,通过引入C3k2模块和FasterSFSC特征融合机制,显著提升了检测精度。文章详细阐述了模型结构优化原理,包括Backbone网络改进、特征融合增强以及Anchor-Free机制等关键技术。同时提供了完整的代码实现方案,涵盖模型预测和训练流程,并分析了关键超参数设置。实验结果表明,该方法能够有效识别变压器表计中的各类部件,为电力设备状态监测提供了可靠的技术支持。

2025-12-28 20:31:03 1000

原创 基于YOLOv9e的货币识别系统_美国硬币纸币检测分类实战

本文介绍了基于YOLOv9e的美国货币识别系统,该系统能高效检测硬币和纸币。系统采用改进的ELAN和P2P结构增强特征提取能力,通过两阶段训练策略(COCO预训练+货币数据微调)提升性能。实验表明,系统平均准确率达97.9%,处理速度60FPS。部署时采用模型量化、硬件加速等优化,并设计了完善的异常处理机制,可在嵌入式设备上实现实时识别。该系统适用于自动售货机、自助终端等场景,具有高精度和实时性的特点。

2025-12-26 08:57:48 932

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除