- 博客(27)
- 收藏
- 关注
原创 基于YOLO11与HSFPN的矿渣检测识别技术研究
本文提出了一种基于YOLO11与改进HSFPN的矿渣检测识别技术,通过改进特征金字塔网络(HSFPN)结构,增强了对多尺度矿渣特征的表示能力。改进的HSFPN融合了多尺度特征、通道注意力机制和优化的跨层连接,显著提升了小目标检测精度。实验结果表明,该方法在mAP@0.5和mAP@0.5:0.95指标上分别达到0.893和0.724,较基线模型提升明显,推理速度仍满足实时需求。该技术可广泛应用于冶金、建材等工业领域的自动化检测,具有重要的推广价值。未来研究将进一步优化模型轻量化和泛化能力。
2026-01-10 11:58:00
677
原创 木材缺陷检测与分类系统_基于FreeAnchor R50 FPN模型实现
本文提出了一种基于FreeAnchor R50 FPN模型的木材缺陷检测与分类系统。该系统通过动态锚框生成机制有效识别裂纹、节疤、虫洞等常见木材缺陷。实验结果表明,该模型在构建的多样化数据集上表现优异,相比传统方法显著提高了检测精度。文章详细介绍了数据集构建、模型架构设计、动态锚框生成机制及训练优化策略,为木材加工行业的自动化质检提供了有效解决方案。
2026-01-03 11:13:37
949
原创 YOLOV8与CGAFusion融合实现建筑工人头部安全装备检测
YOLOV8与CGAFusion融合的建筑安全装备检测方法 本文提出了一种创新的YOLOV8与CGAFusion融合方法,用于建筑工人头部安全装备检测。该方法结合YOLOV8的高效目标检测能力和CGAFusion的多尺度特征融合优势,在复杂建筑场景下实现了96.7%的检测准确率。 技术亮点: 采用YOLOV8的C2f模块和SPPF优化结构 创新CGAFusion模块实现跨尺度特征融合 优化损失函数解决数据不平衡问题 实验结果表明,该方法在自建数据集上显著优于主流检测模型,mAP达到96.7%,推理速度72.
2026-01-03 10:39:37
1041
原创 基于YOLOv8-WaveletPool的妇科MRI图像中早期胚胎发育阶段自动检测与分类
本文提出了一种基于YOLOv8-WaveletPool的妇科MRI图像中早期胚胎发育阶段自动检测与分类方法。通过在YOLOv8骨干网络中引入WaveletPool模块,增强多尺度特征提取能力,显著提高了检测精度。实验结果表明,改进后的WP-YOLOv8在mAP@0.5指标上比原始模型提升6.1%,特别在6W孕周类别上提升最明显(6.9%)。该方法在保持较高推理速度(14.2ms)的同时,有效解决了医学影像分析中的特征提取和类别不平衡问题,为临床早期胚胎发育监测提供了更准确的技术支持。
2026-01-02 20:30:11
751
原创 YOLO11-AIFI实现电缆护套故障检测:改进YOLO系列教你如何优化模型提升检测精度_2
本文提出了一种基于AIFI模块改进的YOLOv11算法(YOLO11-AIFI)用于电缆护套故障检测。针对传统YOLO算法在检测微小故障、低对比度故障时的局限性,AIFI模块通过多尺度特征提取、注意力机制和自适应特征融合三个关键步骤,有效提升了模型对电缆护套故障特征的感知能力。YOLO11-AIFI模型架构包含骨干网络、颈部网络和检测头三部分,在骨干网络和颈部网络中引入AIFI模块增强特征表达能力。实验结果表明,该方法在电缆护套故障检测任务中具有更高的检测精度和鲁棒性,为工业视觉检测提供了新的技术思路。
2026-01-02 20:12:36
515
原创 YOLOv8-HGNetV2海洋垃圾检测与识别系统__深度学习目标检测应用与实现
本文介绍了一种基于YOLOv8-HGNetV2的海洋垃圾检测系统,该系统结合深度学习和轻量化网络结构,可高效识别塑料瓶、塑料袋等10类海洋垃圾。系统采用模块化设计,包含数据采集、模型训练、部署和可视化四个模块,使用8000张图像构建数据集并优化训练策略。实验表明,该系统在检测精度和实时性方面表现优异,可部署于无人机等边缘设备,为海洋环境保护提供技术支持。
2026-01-01 17:21:37
963
原创 多类别水果图像检测与识别:YOLO11-MSBlock分割模型实现
本文提出了一种基于YOLO11-MSBlock的多类别水果图像检测与识别方法。该方法采用改进的YOLO11模型,创新性地引入多尺度特征融合模块(MSBlock)来应对水果尺寸变化大的特点。通过精心设计的数据增强策略和预处理流程,构建了包含10种水果的高质量数据集。实验采用混合精度训练和余弦退火学习率调度等优化策略,在NVIDIA RTX 3090硬件环境下实现了高效训练。该方法能准确识别苹果、香蕉、葡萄等多种水果,为智能农业和零售领域的自动化应用提供了有效解决方案。
2026-01-01 16:39:33
1044
原创 YOLO13-C3k2-RFCBAMConv:基于改进卷积的显卡型号识别与分类技术详解
本文提出了一种改进的YOLO13-C3k2-RFCBAMConv模型用于显卡型号识别。该模型在YOLOv3基础上引入C3k2模块扩大感受野,结合RFCBAMConv注意力机制增强特征提取,并改进FPN结构实现多尺度特征融合。实验表明,该模型在测试集上达到92.3%的mAP,比YOLOv5提升5.7个百分点。创新点包括自适应NMS策略、分层分类方法以及针对显卡形状优化的卷积结构,有效提升了小样本和相似型号的识别准确率。
2025-12-30 12:20:46
888
原创 YOLOv9c改进:挖掘机检测与识别_1
挖掘机检测与识别系统:基于YOLOv9c的改进实现 本文提出了一种基于YOLOv9c的挖掘机检测与识别系统,针对工业场景中的工程机械检测需求进行了多项改进。系统核心创新包括: 模型改进: 引入双注意力机制(CBAM模块)提升特征提取能力 设计多尺度特征融合模块应对挖掘机尺度变化 采用自适应加权focal loss解决样本不平衡问题 系统实现: 基于PyQt6构建桌面应用系统,采用MVC设计模式 实现用户管理、模型训练、实时检测等功能模块 使用SQLite数据库存储检测结果和用户信息 实验验证: 在excav
2025-12-30 11:50:39
1011
原创 基于YOLOv8-SPDConv的水果品质检测与分类识别
本文提出了一种基于YOLOv8-SPDConv的水果品质检测与分类识别方法。通过引入SPDConv空间深度卷积模块,有效提升了模型对小尺寸水果的检测能力。实验结果表明,该方法在自建数据集上达到91.2%的mAP@0.5,相比基准模型提升4.1个百分点。系统可应用于果园分拣、超市检测等场景,实现高效准确的水果品质自动化评估。消融实验验证了SPDConv模块的关键作用,为小目标检测任务提供了有效解决方案。
2025-12-29 09:28:08
923
原创 基于YOLOv10n-LSCD-LQE的糖尿病视网膜病变分级检测模型实现与优化
本文提出了一种基于YOLOv10n-LSCD-LQE架构的糖尿病视网膜病变自动分级检测模型。该模型结合局部空间特征编码器(LSCD)和轻量量化注意力机制(LQE),有效识别视网膜病变特征。通过多尺度特征融合和量化压缩技术,在保持高精度的同时显著提升推理速度。采用加权交叉熵损失函数解决类别不平衡问题,并结合余弦退火学习率等优化策略。实验结果表明,该模型在IDRiD数据集上实现了92.3%的准确率,推理速度较传统方法提高3倍,适合在医疗设备上部署,为糖尿病视网膜病变的早期筛查提供高效辅助诊断方案。
2025-12-29 08:39:44
672
原创 基于VFNet-X101的人体姿态与武器携带行为检测系统研究
本研究基于VFNet-X101模型,构建了一个高效、准确的人体姿态与武器携带行为检测系统。通过精心设计的硬件配置、全面的数据集构建、优化的算法实现和友好的用户界面,系统能够在各种复杂环境下稳定运行,为安防监控提供了强有力的技术支持。😎引入更先进的Transformer架构,提升对复杂场景的理解能力探索轻量化模型部署方案,使系统能够在更多边缘设备上运行结合多模态数据(如红外、毫米波雷达),提高全天候检测能力开发更智能的预警机制,实现从"检测"到"预警"的跨越。
2025-12-28 21:03:53
871
原创 【深度学习实战】从零开始实现变压器表计部件识别-基于YOLO11-C3k2-FasterSFSC模型
本文提出了一种基于改进YOLO11模型的变压器表计部件识别方法,通过引入C3k2模块和FasterSFSC特征融合机制,显著提升了检测精度。文章详细阐述了模型结构优化原理,包括Backbone网络改进、特征融合增强以及Anchor-Free机制等关键技术。同时提供了完整的代码实现方案,涵盖模型预测和训练流程,并分析了关键超参数设置。实验结果表明,该方法能够有效识别变压器表计中的各类部件,为电力设备状态监测提供了可靠的技术支持。
2025-12-28 20:31:03
965
原创 基于YOLOv9e的货币识别系统_美国硬币纸币检测分类实战
本文介绍了基于YOLOv9e的美国货币识别系统,该系统能高效检测硬币和纸币。系统采用改进的ELAN和P2P结构增强特征提取能力,通过两阶段训练策略(COCO预训练+货币数据微调)提升性能。实验表明,系统平均准确率达97.9%,处理速度60FPS。部署时采用模型量化、硬件加速等优化,并设计了完善的异常处理机制,可在嵌入式设备上实现实时识别。该系统适用于自动售货机、自助终端等场景,具有高精度和实时性的特点。
2025-12-26 08:57:48
905
原创 森林野生动物监测与识别·基于双目测距的自动检测分类系统
本系统采用双目视觉技术实现野生动物的自动检测和距离测量,结合深度学习算法进行物种识别,构建了一套完整的森林野生动物监测解决方案。系统能够在复杂环境下自动识别多种野生动物,并记录它们的种类、数量、位置和活动轨迹,为生态保护提供科学数据支持。双目摄像头模块:采集森林环境中的图像和视频数据图像预处理模块:对采集的图像进行去噪、增强等预处理目标检测模块:使用深度学习算法检测图像中的野生动物双目测距模块:计算检测到的目标与摄像头的距离分类识别模块:识别检测到的动物种类数据存储与分析模块。
2025-11-14 16:01:30
972
原创 基于Mask-RCNN和ResNeXt-101的镰状细胞贫血检测方法改进_结合X101-64x4d骨干网络和FPN特征金字塔的多尺度检测模型原创
本文提出了一种改进的镰状细胞贫血检测方法,基于Mask R-CNN框架并采用ResNeXt-101骨干网络(X101-64x4d配置)。通过引入自适应特征融合模块(AFFM)、跨尺度特征增强模块(CSFEM)和多尺度特征注意力机制(MSFA),显著提升了模型对多尺度细胞特征的提取能力。在损失函数方面,设计了多尺度加权分类损失(MSWCL)和形状感知分割损失(SASL),进一步优化了检测性能。实验结果表明,该方法在镰状细胞检测任务中相比基线模型取得了约7.3%的mAP提升,对小尺寸细胞的检测精度提高8.7%,
2025-11-14 15:33:22
698
原创 YOLOv8-MAN-Faster:卫星天线检测与识别的新突破
本文提出了一种改进的YOLOv8-MAN-Faster模型,专门用于卫星天线检测任务。该模型创新性地引入了多尺度注意力机制和自适应特征融合模块,有效提升了不同尺寸卫星天线的检测精度。实验表明,该模型在公开数据集上达到88.7%的mAP,较传统方法提升显著,同时保持了42FPS的实时处理速度。消融实验验证了各模块的有效性,实际应用案例也展示了该技术在通信网络监控、卫星图像分析等场景中的良好表现。未来将在小目标检测、跨域泛化等方面进一步优化,推动卫星天线检测技术的实用化发展。
2025-11-11 20:20:09
909
原创 【YOLO11-HSPAN】基于改进YOLO11的网球目标检测与跟踪系统详解
本文提出了一种基于改进YOLO11-HSPAN的网球目标检测与跟踪系统。通过引入层次化空间注意力和位置感知网络(HSPAN)模块,系统显著提升了小目标检测精度和跟踪稳定性。实验表明,改进后的YOLO11-HSPAN在精确率(0.923)、召回率(0.911)和mAP(0.917)方面优于基线模型,同时保持46FPS的实时性能。该系统可应用于比赛分析、裁判辅助、球员训练和体育转播等多个场景,通过模块化设计实现了数据预处理、模型训练、目标检测与跟踪等功能。未来将进一步优化多目标跟踪、3D轨迹重建和边缘计算等方向
2025-11-11 19:55:28
751
原创 基于YOLOv8-EMBSFPN-SC的淡水鱼种类识别与分类:从模型改进到实际应用
本文提出了一种改进的YOLOv8模型(YOLOv8-EMBSFPN-SC)用于淡水鱼种类识别,通过引入增强多尺度特征融合网络(EMBSFPN)和自校准模块(SC),显著提升了模型性能。在自建10类15,280张图像的淡水鱼数据集上测试,改进模型mAP达到89.7%,推理速度65.2 FPS,相比原YOLOv8提升5.3%精度和8.7%速度。消融实验验证了各改进模块的有效性,并展示了在边缘计算设备上的优化部署方案。该系统为水产养殖和生态监测提供了高效的技术支持,具有实际应用价值。
2025-11-09 18:37:38
764
原创 基于YOLOv8-EMBSFPN-SC的淡水鱼种类识别与分类:从模型改进到实际应用
本文提出了一种改进的YOLOv8模型(YOLOv8-EMBSFPN-SC)用于淡水鱼种类识别,通过引入EMBSFPN多尺度特征融合结构和SC小目标检测模块,显著提升了识别性能。在自建15,280张图像数据集上测试,mAP达89.7%,推理速度65.2 FPS,较原始模型提升5.3%和8.7%。系统部署采用"边缘计算+云端管理"架构,经量化优化后可在Jetson Nano上实现30FPS实时识别,为水产养殖和生态监测提供了高效解决方案。消融实验验证了各改进模块的有效性,特别提升了小型鱼类的
2025-11-09 18:06:52
900
原创 家禽健康状态检测与死鸡识别:基于YOLO11-Seg和SwinTransformer的智能检测系统原创
本文提出了一种基于YOLO11-Seg和SwinTransformer的智能检测系统,用于家禽健康状态监测和死鸡识别。系统结合YOLO11-Seg的目标检测能力和SwinTransformer的特征提取优势,在50,000张养殖场图像数据集上进行了训练和测试。实验结果表明,该模型在精确率(0.937)、召回率(0.925)等指标上优于对比模型,尤其对死鸡检测效果显著。系统采用轻量级设计,在边缘设备上可实现12-45FPS的实时检测,并配备可视化界面,为规模化养殖场提供自动化健康监测解决方案。
2025-11-07 14:23:29
1079
原创 基于无人机航拍图像的羊群检测与计数:YOLOv8与VanillaNet融合实现
本文提出了一种基于YOLOv8与VanillaNet融合的羊群检测与计数方法,通过结合两种网络的优势提高无人机航拍图像中羊群检测的精度和效率。研究采用自建数据集(5000张标注图像),在YOLOv8架构中引入VanillaNet的深度可分离卷积模块和轻量级特征融合模块,并设计了多尺度损失函数。实验结果表明,融合模型在mAP@0.5:0.95指标上比原始YOLOv8提升8.2%,达到0.765,同时保持43FPS的实时检测速度。消融实验验证了各改进模块的有效性,为无人机航拍场景下的密集小目标检测提供了新的解决
2025-11-07 13:54:47
861
原创 【海洋目标检测】YOLOv8实现多目标识别与定位_船只浮标人员舰船军舰检测
本文基于YOLOv8框架实现海洋环境中的多目标检测,包括船只、浮标、人员等目标的识别与定位。详细介绍了环境配置、数据集准备、模型训练和推理等步骤,提供了数据增强和模型优化的具体方法,为海洋监测与搜救等应用提供技术支持。实验结果表明,该方法在复杂海洋环境下具有较高的检测精度和实时性。
2025-11-06 14:31:45
764
原创 YOLO11-CAFMFusion:射击靶纸弹孔检测与识别系统_深度学习目标检测_实战应用_原理解析
YOLO11-CAFMFusion是一种新型的射击靶纸弹孔检测系统,结合YOLO11目标检测算法和CAFMFusion注意力机制,显著提升了弹孔识别精度。该系统在自建数据集(796张靶纸图像)上达到92.3%的mAP和66FPS的检测速度,支持实时自动计分。创新性的CAFMFusion模块通过通道与空间注意力机制,自适应调整特征权重,使模型能更准确地识别密集弹孔。实验表明,该系统相比传统方法在精度和效率上均有显著提升,已成功应用于射击训练和比赛场景。
2025-11-06 14:11:22
867
原创 【黑鲈鱼检测】基于DINO-5scale与Swin-L模型的黑鲈鱼目标检测系统训练与实现_1
本文提出了一种基于DINO-5scale与Swin-L模型的黑鲈鱼检测系统。通过结合Swin-L的强大特征提取能力和DINO-5scale的多尺度检测优势,构建了一个高效准确的目标检测框架。实验结果表明,该系统在mAP(0.924)、F1-score(0.926)等指标上表现优异,且具备28FPS的实时检测能力。消融实验验证了各组件对性能提升的贡献,实际应用案例展示了该系统在水产养殖管理中的实用价值。最后通过模型压缩技术,使该系统能够部署在边缘计算设备上,为水产养殖智能化提供技术支持。
2025-11-05 15:46:17
986
原创 YOLO11-C3k2-EMBC_变电站电力设施鸟巢检测系统
本文介绍了基于YOLO11-C3k2-EMBC深度学习架构的变电站电力设施鸟巢检测系统。该系统采用分层架构设计,通过YOLO11-C3k2模型和EMBC模块实现高精度鸟巢检测,准确率达95.3%。研究人员构建了包含12,560张变电站图像的数据集,并采用多种数据增强策略提升模型鲁棒性。系统采用模型量化技术实现边缘部署,在NVIDIA Jetson Nano平台上达到25fps处理速度,满足变电站实时检测需求。该方案显著提高了鸟巢检测效率,为电力设施安全运行提供了有效保障。
2025-11-05 15:10:00
1041
原创 UNet++到底在做什么?
本文探讨了U-Net及其改进模型U-Net++在医学图像分割中的应用。U-Net基于编码-解码结构,通过降采样和升采样实现图像分割,但其固定的4层结构并非适用于所有数据集。U-Net++通过整合不同深度的U-Net,并采用长短连接结合的方式,使网络能自适应学习不同层次特征的重要性。此外,引入深监督机制可进行模型剪枝优化。研究表明,U-Net++能更有效地捕捉多尺度特征,提升分割性能,为医学图像处理提供了灵活高效的解决方案。
2025-09-30 23:46:26
652
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅