UVA NO.624 CD(打印路径,简单背包问题)

本文介绍了一个经典的01背包问题,并通过一个具体的实例详细解释了如何利用动态规划求解该问题,同时实现了打印最优解的路径。通过此文章可以了解到如何处理背包问题中的物品选择,以及如何在多种选择中寻找最优解。

问题描述:

样例输入:m a b c d

问a b c d选取他们一个或多个元素使它们的和最接近m(不能超过m)。

题目链接:UVA NO.624

思路:

其实这个题是一个很简单的01背包问题,只不过多了一个打印路径的条件,

由于这个题中没有要求输出时要按照字典序输出,所以给出其中一种即可。

贴出这个题的目的就是为了方便以后回顾打印路径方面的问题。

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<stack>
#include<cstring>
#include<string>
#include<vector>
#include<set>
using namespace std;

#define X first
#define Y second
#define PI 3.1415926

const int MAX = 10000;
const int INF = 0x3f3f3f3f;

//visit这个数组用来标记我们选择的元素...

int dp[MAX][MAX], visit[MAX][MAX], a[MAX];

int main()
{
    int m, n;
    while(scanf("%d%d", &m, &n) != EOF)
    {
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
        }
        for(int j = 0; j <= n; j++)
            for(int i = 0; i <= m; i++)
            {
                dp[j][i] = 0;
                visit[j][i] = 0;
            }
        for(int i = 1; i <= n; i++)
        {
            for(int j = 0; j <= m; j++)
            {
                dp[i][j] = dp[i-1][j];
                if(j >= a[i])
                {
                    if(dp[i][j] < dp[i-1][j-a[i]] + a[i])
                    {
                        visit[i][j] = 1;
                        dp[i][j] = dp[i-1][j-a[i]] + a[i];
                    }
                }
            }
        }
        int t = m;
        for(int i = n; i >= 1; i--)
        {
            if(visit[i][t] == 1 && t >= 0)
            {
                printf("%d ", a[i]);
                t -= a[i];
            }
        }
        printf("sum:%d\n", dp[n][m]);
    }
    return 0;
}


内容概要:本文围绕无人机集群路径规划问题展开研究,采用五种优化算法(SFOA、APO、GOOSE、CO、PIO)【无人机集群路径规划】基于5种优化算法(SFOA、APO、GOOSE、CO、PIO)求解无人机集群路径规划研究(Matlab代码实现)进行求解,并提供了基于Matlab的代码实现。文章重点探讨了这些智能优化算法在复杂环境下的路径搜索能力、收敛性能及避障策略,通过仿真实验对比分析各算法在无人机集群协同路径规划中的有效性与优劣,旨在提升多无人机系统的任务执行效率与路径最优性。研究内容涵盖了路径规划的数学建模、适应度函数设计、约束条件处理以及多机协同机制,展示了优化算法在实际工程问题中的应用价值。; 适合人群:具备一定Matlab编程基础和优化算法知识的科研人员、自动化或计算机相关专业的研究生及高年级本科生,以及从事无人机系统开发与智能控制领域的技术人员。; 使用场景及目标:①用于解决多无人机协同执行侦察、监测、救援等任务时的路径规划问题;②为智能优化算法在复杂空间搜索问题中的性能对比提供实验平台;③辅助科研人员复现算法结果、开展进一步改进与创新研究; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建与参数设置对优化结果的影响,建议通过调整环境障碍物布局和无人机数量进行扩展实验,以增强对算法鲁棒性和可扩展性的认识。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值