彩票收集问题的扩展问题及其求解算法

本文探讨了彩票收集问题的多种扩展情况,包括彩票抽取概率不相等、每种彩票需收集c张以及抽取张数不相等的场景。详细介绍了在不同条件下计算期望抽取次数的算法,并提供了Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

彩票收集问题

彩票收集问题的一个描述是,有n种彩票,每次随机抽取其中一种彩票一张,则要收集每种彩票各一张所需要抽取的次数的期望是多少。

求解方法

对于每种彩票的抽取概率均相等的情况,则抽取到第一种彩票的概率为1,期望次数为1。之后抽取到第二种彩票的概率为从n种彩票中抽取n-1种彩票的概率,即 ( n − 1 ) / n (n-1)/n (n1)/n,期望次数为 n / ( n − 1 ) n/(n-1) n/(n1),以此类推,第三种彩票的概率为 ( n − 2 ) / n (n-2)/n (n2)/n,期望次数 n / ( n − 2 ) n/(n-2) n/(n2)
故总次数的期望为
1 + n / ( n − 1 ) + n / ( n − 2 ) + . . . + n = n ( 1 / n + 1 / ( n − 1 ) + 1 / ( n − 2 ) + . . . + 1 ) = n H n 1+n/(n-1)+n/(n-2)+...+n = n(1/n+1/(n-1)+1/(n-2)+...+1) = n H_n 1+n/(n1)+n/(n2)+...+n=n(1/n+1/(n1)+1/(n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值