Java大厂面试故事:从Spring Boot到分布式微服务,赵大宝的互联网医疗求职之路
面试故事场景设置
主角赵大宝,求职于某知名互联网医疗大厂Java开发岗位。面试官严肃专业,赵大宝则是个幽默又略显水货的程序员。面试分三轮,每轮3~5个问题,涉及技术点渐进深入,结合真实医疗业务场景。
第一轮:互联网医疗基础业务场景与核心技术
面试官:赵大宝你好,先聊聊你的项目经历。我们互联网医疗平台用Spring Boot做服务开发,能简单说说Spring Boot的核心优势吗?
赵大宝:啊这个,Spring Boot不用写一堆配置,开箱即用,starter挺多的,开发效率杠杠的!
面试官:不错!那你说说,数据库我们用MyBatis做数据访问,怎么用MyBatis和HikariCP优化数据库性能?
赵大宝:呃,MyBatis可以写SQL,HikariCP就是连数据库快,线程池啥的……(有点迷糊)
面试官:(微笑)再追问一下,系统有个预约挂号接口,我们用JUnit 5怎么做单元测试?
赵大宝:JUnit 5写@Test,跑一下就知道接口对不对了。
面试官:很好,思路清楚。
面试官:平台上线要接入Prometheus监控,讲下Prometheus的基本用法?
赵大宝:呃,Prometheus好像能看指标,拉数据,报警啥的……
面试官:没错,继续努力。
第二轮:微服务架构与安全风控
面试官:我们系统拆成了微服务,问下Spring Cloud和OpenFeign在远程调用里的作用?
赵大宝:Spring Cloud能做服务注册,OpenFeign能写接口像调用本地方法一样调用远程服务。
面试官:很好!那你知道Resilience4j怎么做服务容错吗?
赵大宝:呃,Resilience4j是限流啥的,能防止服务挂掉……具体的…我不太记得了。
面试官:(善意提醒)是的,有熔断、限流等功能。再问,互联网医疗数据涉及隐私,我们用Spring Security和JWT实现身份认证,你能说下原理吗?
赵大宝:JWT是个令牌,登录后给一个,Spring Security好像能拦截请求……
面试官:答得还不错。再问,日志我们用Logback,如何配置日志分级与归档?
赵大宝:Logback可以写配置文件,info、error分开存,时间到了自动归档。
面试官:很对。
面试官:消息通知用Kafka,Kafka的消息是怎么保证不丢失的?
赵大宝:呃……Kafka有分区啥的,应该……不会丢吧。
面试官:还需加强。
第三轮:高并发场景、云原生与大数据
面试官:高峰期挂号抢号压力大,怎么用Redis和Caffeine做多级缓存?
赵大宝:Redis放常用数据,Caffeine在本地缓存,两个一起用快多了。
面试官:说得好。我们用Kubernetes做容器编排,简述一下Pod和Service的作用吧?
赵大宝:Pod就是装服务的盒子,Service能让Pod被访问到。
面试官:不错。谈谈Elasticsearch在医疗检索里的用法?
赵大宝:Elasticsearch能搜病例,搜医生,搜药品……反正搜东西快!
面试官:是的。最后一个问题,大数据流程用Spark处理,Spark和传统MapReduce在医疗数据分析中有啥区别?
赵大宝:呃……Spark比MapReduce快,代码也少一点……
面试官:可以。赵大宝,今天面试到这里,你回去等通知吧。
技术点详细解读与业务应用
1. Spring Boot核心优势
Spring Boot极大简化了Java企业应用开发,自动配置、丰富starter、高度集成Spring组件,大幅提升开发效率。互联网医疗平台通常业务迭代快,Spring Boot能快速响应需求。
2. MyBatis与HikariCP优化数据库性能
MyBatis负责灵活的数据访问,配合高性能的HikariCP连接池(支持连接复用、空闲检测、连接健康检查等),能显著提升高并发下数据库的吞吐。
3. JUnit 5单元测试
用JUnit 5编写@Test注解的测试方法,可以验证接口逻辑正确性,是自动化测试和持续交付的基础。
4. Prometheus监控
Prometheus通过拉取方式定时收集应用暴露的指标,支持多维度查询和报警,在医疗系统保障服务健康运行。
5. Spring Cloud与OpenFeign
Spring Cloud为微服务提供服务注册/发现、配置管理等,OpenFeign让开发者用声明式方式实现RESTful远程调用,极大简化了服务之间的通信。
6. Resilience4j服务容错
Resilience4j支持熔断、限流、降级等机制。应对突发流量,防止服务雪崩,保障平台稳定性。
7. Spring Security与JWT
Spring Security负责接口安全,JWT令牌机制实现无状态认证,保护用户隐私,是医疗场景下的安全基石。
8. Logback日志管理
Logback通过配置文件实现多级日志输出和自动归档,便于定位故障和安全审计。
9. Kafka消息可靠性
Kafka通过分区副本、消息确认机制保证消息高可用和不丢失,适合医疗消息通知、异步任务等场景。
10. Redis与Caffeine多级缓存
Redis做分布式缓存,Caffeine做本地缓存,结合能极大降低数据库压力,提升系统响应速度。
11. Kubernetes的Pod与Service
Pod是最小部署单元,Service实现Pod的负载均衡和访问入口,实现服务的动态伸缩和高可用。
12. Elasticsearch应用
Elasticsearch适合大规模医疗数据的全文检索,如病例、医生、药品等搜索,提升用户体验。
13. Spark与MapReduce区别
Spark在内存运算、API友好性和速度上优于MapReduce,适合大数据医疗分析场景,如健康预测、数据挖掘等。
本篇通过场景化的问答故事,梳理了互联网医疗常用Java技术栈及其业务应用,对初学者有很强的指导意义。