分治算法

分治算法

一、基本概念

在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

二、基本思想及策略

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

三、分治法适用的情况

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决;

2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;

3) 利用该问题分解出的子问题的解可以合并为该问题的解;

4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。


第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法;

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

四、分治法的基本步骤

分治法在每一层递归上都有三个步骤:

Step1—分解:将原问题分解为若干个规模较小、相互独立、与原问题形式相同的子问题;

Step2—解决:若子问题规模较小且容易被解决则直接解,否则递归地解各个子问题;

Step3—合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

Divide-and-Conquer(P):

    if |P|≤n0

   then return BASE(P)

   将P分解为较小的子问题P1 ,P2 ,...,Pk

   for i = 1 to k

   do yi = Divide-and-Conquer(Pi) //递归解决Pi

   T = MERGE(y1,y2,...,yk) //合并子问题

   return T

其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。BASE(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时,直接用算法BASE(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。

五、分治法的复杂性分析


 一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:T(n)= k T(n/m)+f(n)

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。 

六、可使用分治法求解的一些经典问题

(1)二分搜索

(2)大整数乘法

(3)Strassen矩阵乘法

(4)棋盘覆盖

(5)合并排序

(6)快速排序

(7)线性时间选择

(8)最接近点对问题

(9)循环赛日程表

(10)汉诺塔

七、依据分治法设计程序时的思维过程

实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。

1、一定是先找到最小问题规模时的求解方法;

2、然后考虑随着问题规模增大时的求解方法;

3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。

八、经典问题求解方法

(1)二分搜索

1、问题分析

二分搜索法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。

时间复杂度:二分搜索每次把搜索区域减少一半,很明显时间复杂度为O(logN)。 
空间复杂度:O(1),虽以递归形式定义,但是尾递归,可改写为循环。

它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。如果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。

二分搜索法的应用极其广泛,而且它的思想易于理解,但是要写一个正确的二分搜索算法也不是一件简单的事。第一个二分搜索算法早在1946年就出现了,但是第一个完全正确的二分搜索算法直到1962年才出现。Bentley在他的著作《Writing Correct Programs》中写道,90%的计算机专家不能在2小时内写出完全正确的二分搜索算法。问题的关键在于准确地制定各次查找范围的边界以及终止条件的确定,正确地归纳奇偶数的各种情况,其实整理后可以发现它的具体算法是很直观的

2、代码实现
#include "stdio.h"\
 
void quiksort(int a[],int low,int high)
{
    int i = low;
    int j = high;  
    int temp = a[i]; 
  
    if( low < high)
    {          
        while(i < j) 
        {
            while((a[j] >= temp) && (i < j)) j--; 
            a[i] = a[j];
            while((a[i] <= temp) && (i < j)) i++; 
            a[j]= a[i];
        }
        a[i] = temp;
        quiksort(a,low,i-1);
        quiksort(a,j+1,high);
    }
    else return;
}

int binarysearch(int a[],int y,int n)
{
	int left = 0;
	int right = n-1;
    int mid;
    
    while(left<=right)  
        {  
            mid = (left + right) / 2;  
            if(y == a[mid]) return (mid + 1);  
            else if(y > a[mid]) left = mid + 1;  
            else if(y < a[mid]) right = mid - 1;  
        }  
    return -1;  
}

int main()
{
	int a[100];
	int i,n,m,temp;
	scanf("%d",&n);
	for(i = 0;i < n;i++)
		scanf("%d",&a[i]);
	quiksort(a,0,n-1);
	
	for(i = 0;i < n;i++)
		printf("%d\t",a[i]);
	printf("\n");
	
	scanf("%d",&m);
	temp = binarysearch(a,m,n);
	printf("%d",temp);
	return 0;
}

(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔

1、问题描述:

问题的历史渊源:汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。

问题提出:有三个塔(分别为A号,B号和C号)。开始时,有n个圆形盘以从上到下、从小到大的次序堆叠在A塔上。现要将A塔上的所有圆形盘,借助B塔,全部移动到C塔上,且仍按照原来的次序堆叠。

移动的规则:这些圆形盘只能在3个塔间进行移动。一次只能移动一个盘子,且任何时候都不允许将较大的盘子压在比它小的盘子的上面。

2、问题分析

现在,我们具体讨论一下汉诺塔问题的解法:

对于A塔上有n个圆形盘,要将n个圆形盘移动至C塔,则应先将n-1个圆形盘(从上到下,从小到大)移动到B塔,然后将A塔的第n个圆形盘移动至C塔。

然后,下面的步骤就是将B塔的n-1个圆形盘移动至C塔的过程,其具体过程同上一步相似,先将n-2个圆形盘移动至A塔,然后再将B塔的第n-1个圆形盘移动至A塔。

依次递归类推,直到最后只有一个圆形盘时截止。

首先,我们设置移动函数Move(int disc, char srcT, char dstT);

此函数声明的意义是:将disc盘从srcT塔移动至dstT塔,并打印移动信息。

现在,我们设置函数Hanno(int N, char A, char B, char C);

此函数声明的意义是:借助于B塔,将N个圆形盘从A塔移动至C塔。

那么该函数所实现的步骤是:

如果N == 1:

====>>>

直接将N个圆形盘从A塔移动至C塔;

如果N != 1:

====>>>

(1)、首先,借助于C塔,将N-1个圆形盘由A塔移动至B塔,此处简化为函数即为Hanno(N-1, A, C, B);

(2)、然后,将A塔的第N个圆形盘移动至C塔,此处简化为函数即为Move(N,A,C);

(3)、最后,借助A塔,将N-1个圆形盘由B塔移动至C塔,此处简化为函数即为Hanno(N-1,B,A,C)

3、移动次数计算:

首先,设Count(n)为移动n个圆形盘所需的步数:

则有:

Count(1) = 1;

Count(n) = Count(n-1)*2 + 1;

即:Count(n) = 2^n -1;

4、代码实现:
#include <stdio.h>

void move(int n, char srcT, char dstT)  
{  
//  printf("Move disc %d from tower %c to tower %c !\n", n, srcT, dstT);  
    printf("%c-->%c\n",srcT,dstT);   
}  
  
void hanno(int N, char A, char B, char C)  
{  
    if(N == 1)  
        move(1,A,C);  
    else  
    {         
        hanno(N-1,A,C,B);  
        move(N,A,C);  
        hanno(N-1,B,A,C);  
    }  
}  
  
int main(){  
    int n;  
    char t_first,t_second,t_third;  
    t_first = 'A';  
    t_second = 'B';  
    t_third = 'C';
    
    printf("Please input the number of round-disc:\n");  
    scanf("%d",&n);
    printf("The movement steps:\n");  
    hanno(n,t_first,t_second,t_third);  
    return 0;  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

風珏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值