题意见CF282C
解法
由于每个区间只会绝对包含或者绝对分离,于是我们可以先加一个区间,其值为1 n 0,
然后把每个区间当成一个节点,建立一颗树。
如果有两个区间A,B,假如A被包含于B,于是A是B的子节点。
建立起树后,在这棵树上面进行DP。
首先对于每个节点(也就是每个区间),有一个最大的数字,首先可以保证的是得出的结果肯定是大于这个数字的。
当然每个区间的最大数字可以简单的直接用RMQ得出。
假设节点代表区间中最大的数为mx,于是对每个节点维护一个序列p0,p1,p2...
分别表示这个区间结果为 mx+0, mx+1, mx+2....的概率。
向如上所说的表示状态后,就可以找到状态转移的方法了。
具体细节建议自己推一推,大体思路就是这样,
具体的建树方法和dp的转移方法应该自己思考,
下面是我的代码。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <vector>
#include <math.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define FOR(i, j, k) for(int i=(j);i<=(k);i++)
#define REP(i, n) for(int i=0;i<(n);i++)
#define mst(x, y) memset(x, y, sizeof(x));
#define pii pair<int, int>
#define fr first
#define sc second
#define left myleft
#define right myright
#define ull unsigned long long
#define seed 1331
#define mod ((int)1e9+7)
#define eps 1e-8
int n, m, money[100009];
struct Node0{int l, r, mx;}tree[100009*4];
void build(int u, int l, int r){
tree[u].l=l;tree[u].r=r;
if(l == r) {tree[u].mx=money[l];return;}
int mid = l+r>>1;
build(u*2, l, mid);
build(u*2+1, mid+1, r);
tree[u].mx = max(tree[u*2].mx, tree[u*2+1].mx);
}
int query(int u, int l, int r){
if(tree[u].l==l && tree[u].r==r) return tree[u].mx;
int mid = tree[u].l+tree[u].r>>1;
if(r <= mid) return query(u*2, l, r);
else if(l > mid) return query(u*2+1, l, r);
return max(query(u*2, l, mid), query(u*2+1, mid+1, r));
}
pair <pii, double> seg[5009];
bool cmp(pair <pii, double> p0, pair <pii, double> p1){
if(p0.fr.fr == p1.fr.fr) return p0.fr.sc > p1.fr.sc;
return p0.fr.fr < p1.fr.fr;
}
struct Node{ // 用来表述树上每个节点
vector <Node *> son; // 维护子孙节点
int mx, idx, now; // idx表示这个节点代表idx号区间, now是做DP时的辅助变量
double bl, eq; // 这两个都是做DP时的辅助变量
vector <double> p; // 用来维护p0, p1, p2...的概率
Node(int ii, int mm){mx = mm, idx = ii;}
Node(){};
}*root;
void dfs0(Node *u, int& idx){ // dfs0进行建树
while(idx<m && seg[u->idx].fr.sc >= seg[idx].fr.fr){
Node *p = new Node(idx, query(1, seg[idx].fr.fr, seg[idx].fr.sc));
u->son.push_back(p);
dfs0(p, ++ idx);
}
}
void init(Node *u, int lim){
u->bl = u->eq = u->now = 0;
while(u->now < u->p.size() && u->mx + u->now < lim)
u->bl += u->p[u->now ++];
u->eq = u->bl;
if(u->now < u->p.size()) u->eq += u->p[u->now];
}
bool push(Node *u){
u->bl = u->eq;
if(u->now+1 < u->p.size()) {
u->eq += u->p[u->now ++ + 1];
return 1;
}
return 0;
}
void dfs1(Node *u){
REP(i, u->son.size()) dfs1(u->son[i]);
REP(i, u->son.size()) init(u->son[i], u->mx);
bool first = 1;
int dif = 3;
while(1){
double p0 = 1, p1 = 1;
REP(i, u->son.size())
p0 *= u->son[i]->eq, p1 *= u->son[i]->bl;
if(first) first = 0;
else p0 -= p1;
u->p.push_back(p0);
bool flag = 0;
REP(i, u->son.size())
flag |= push(u->son[i]);
if(!flag && p0 < eps) dif --;
if(!dif) break;
}
for(int i=u->p.size()-2;i>=0;i--){
u->p[i+1] += u->p[i] * seg[u->idx].sc;
u->p[i] *= (1 - seg[u->idx].sc);
}
}
int main(){
cin>>n>>m;
FOR(i, 1, n) cin>>money[i];
build(1, 1, n);
//这之前是准备线段树来做RMQ
REP(i, m) cin>>seg[i].fr.fr>>seg[i].fr.sc>>seg[i].sc;
seg[m].fr.fr = 1, seg[m].fr.sc = n, seg[m].sc = 0, m++;
sort(seg, seg+m, cmp);
root = new Node(0, query(1, 1, n));
int idx = 1;
dfs0(root, idx);
//这之前是进行建树
//dfs1代表在建立好的树上进行DP
dfs1(root);
//计算答案
double ans = 0;
REP(i, root->p.size()) ans += root->p[i]*(root->mx + i);
printf("%.8lf\n", ans);
return 0;
}