计算机图形学
文章平均质量分 92
点燃火柴
心之所向,涸池若海
展开
-
计算机图形学(九)-纹理的应用,环境贴图、凹凸贴图、法线贴图、位移贴图
纹理可以理解为GPU上的一块内存,内存上有一块区域可以做点查询也可以做范围查询,并且很快,可以认为纹理是一块数据,可以做不同类型的查询,不限于把它理解成图像,纹理可以表示很多东西,比如环境光照(环境光映射/环境贴图)原创 2022-09-18 17:12:45 · 3411 阅读 · 0 评论 -
计算机图形学(八)-纹理映射、计算重心坐标、UV插值、双线性插值、MipMap
如上图球的表面贴上一张绘制了地图的二维图片,就变成了地球仪,这张二维的图片就是纹理,把这个图贴到球表面伴随着这纹理的放大缩小以及将纹理中的某个点和球上的某个点对应起来,这个过程就是纹理映射纹理映射的过程通常是这样的,建模人员给开发人员的模型中通常会有与顶点一一对应的uv坐标,同时提供一张纹理贴图,比如说要对模型的某个顶点着色,这时获取到这个顶点对应的uv坐标,拿着这个坐标从纹理贴图中取色,取到后把值赋给存储顶点颜色的变量。原创 2022-09-18 10:36:04 · 6298 阅读 · 0 评论 -
计算机图形学(七)-深度缓存、着色shadding、着色模型、着色频率、渲染管线
图形渲染过程着色相关知识点,深度缓存实现原理、着色模型,面着色 Flat Shadding,顶点着色 Gauroud Shaddding 片元着色 Phong Shading 光照计算模型:漫反射光照模型、高光模型、环境光模型,渲染管线原创 2022-09-15 13:15:50 · 1698 阅读 · 0 评论 -
计算机图形学(六)-光栅化、采样、走样与反走样、滤波与卷积
光栅化1 什么是光栅化(Rasterization)2 单个三角形光栅化3 采样(sampling)1 什么是光栅化(Rasterization)屏幕空间如上图,将电脑屏幕理解为一个二维坐标,屏幕上左下角为坐标原点,水平向右为x轴方向,垂直向上为y轴方向像素(Pixel)在屏幕上排列的最小单位,上图中每一个方块理解为一个像素,假设屏幕大小为w×h,那么在屏幕中一共有w×h个像素,这些像素像二维数组一样在屏幕中排列,左下角像素的坐标是(0,0),右上角像素的坐标为(w-1,h-1)。每个方块的中点原创 2021-08-07 23:52:34 · 5368 阅读 · 0 评论 -
计算机图形学(五)-MVP变换之投影(Projection)变换
MVP变换之投影[Projection]变换1 投影变换介绍2 正交投影2.1 正交投影介绍2.2 正交投影矩阵推导2.3 正交投影矩阵3 透视投影3.1 透视投影介绍3.2 透视投影矩阵推导3.2.1 复习齐次坐标3.2.2 透视投影矩阵推导思路3.2.3 透视投影到正交投影的变换矩阵推导3.3 透视投影矩阵3.4 FOV和Aspect ratio表示透视投影矩阵1 投影变换介绍之前已经提到MVP变换指的是:模型变换(model)、视图变换(view)、投影变换(projection)。这三大变换好比原创 2021-07-22 23:11:23 · 3746 阅读 · 5 评论 -
计算机图形学(四)-MVP变换之视图(View)变换
视图变换与投影变换1 视图变换1.1 相机介绍1.2 视图变换矩阵2 投影变换2.1 正交投影2.2 透视投影1 视图变换视图变换说的通俗易懂一点就像拍照的时候摆相机,那么就要用拍照来类比一下把三维空间中的物体投影到二维平面上展示,拍照通常需要三步,人物摆pose、调整相机、按下快门拍照。把三维物体投影到二维平移则需要经过模型变换(model)、视图变换(view)、投影变换(projection), 现在把它们与拍照类比如下摆Pose-模型变换调整相机位置-视图变换拍照-投影变换1.1 相原创 2021-07-21 22:49:58 · 1941 阅读 · 2 评论 -
计算机图形学(三)-图形学中的基本变换(缩放、平移、旋转、剪切、镜像)
图形学中的基本变换1. 二维变换1.1 缩放变换1.2.镜像变换1.3 剪切变换1.4 旋转变换1.5 平移变换1.5.1 原本平移变换1.5.2 平移变换齐次坐标表示1.6 逆变换1.7 组合变换1.8 非原点的旋转变换1.9 二维主要变换矩阵总结1.10 二维矩阵变换合并2 三维变换2.1 三维平移变换2.2 三维缩放矩阵2.3 三维旋转矩阵2.3.1 绕x轴旋转矩阵2.3.2 绕y轴旋转矩阵2.3.3 绕z轴旋转矩阵2.3.4 绕任意轴旋转矩阵1. 二维变换1.1 缩放变换如上图,如果想把一原创 2021-07-18 21:12:12 · 15388 阅读 · 13 评论 -
计算机图形学(二)-矩阵基础
认识矩阵及其应用1. 什么是矩阵1.1 一些特殊的矩阵1.1.1 单位矩阵2. 矩阵的运算2.1 矩阵加法1. 什么是矩阵线性代数中把矩阵定义为:由m×n 个元素按m 行,n 列的方式排列,就构成矩阵,用下面的方式表示一个矩阵的行数与列数都等于n,称为n阶矩阵或n维矩阵1.1 一些特殊的矩阵1.1.1 单位矩阵一个矩阵的对角线上(从左上角到右下角的对角线)的元素均为1,其余的元素都是0的矩阵称为单位矩阵,二维单位矩阵表示为三维单位矩阵表示为2. 矩阵的运算2.1 矩阵加法...原创 2021-07-13 23:44:58 · 4055 阅读 · 2 评论 -
计算机图形学(一)-向量、向量加减法、向量的点积(乘)及应用、向量的叉积(乘)及应用
向量加减法,向量的点积(乘),向量的叉积(乘)向量 是用来表示既有大小又有方向的量,不过向量在空间中没有具体的位置,通常用一个加粗的小写字母来表示一个向量,或者不加粗顶上带有小箭头的小写字母来表示由 A 点指向 B 点的一个有向线段,称为向量 aa = B - A 用有向线段的结束点B减去起始点A就得到这个向量 a|a| 表示向量a的长度â 表示原创 2021-05-08 23:19:53 · 18320 阅读 · 2 评论